Fused deposition modeling is the most widely used 3D-printing technology, with the advantage of being an accessible forming process. However, the poor mechanical properties of the formed parts limit its application in engineering. Herein, a new ultrasonic-assisted fused deposition modeling 3D-printing method was proposed to improve the mechanical properties of the formed parts. The effects of ultrasonic vibration substrate process parameters and printing process parameters on the tensile and bending properties of formed samples were studied. The tensile strength and bending strength of the samples printed with a 12 μm ultrasonic amplitude can be increased by 13.2% and 12.6%, respectively, compared with those printed without ultrasonic vibration. The influence mechanism of ultrasonic vibration on mechanical properties was studied through microscopic characterization and in situ infrared monitoring experiments. During the printing process, increasing the ultrasonic vibration and temperature employed via the ultrasonic substrate can reduce the pore defects inside the sample. The mechanical properties of FDM-formed samples can be controlled by adjusting ultrasonic-assisted process parameters, which can broaden the application of 3D printing.
Purpose.: To examine the influence of experimentally reduced cerebrospinal fluid pressure (CSFP) on retinal nerve fiber layer (RNFL) thickness and neuroretinal rim area of the optic nerve head. Methods.: This experimental study included nine monkeys that underwent implantation of a lumbar–peritoneal cerebrospinal fluid (CSF) shunt. In the study group (n = 4 monkeys), the shunt was opened to achieve a CSF of approximately 40 mm H2O, while the shunt remained closed in the control group (n = 5 monkeys). At baseline and in monthly intervals thereafter, optical coherence tomographic and photographic images of the optic nerve head and RNFL were taken of all monkeys. Results.: Two out of four monkeys in the study group showed bilaterally a progressive reduction in RNFL thickness between 12% and 30%, reduction in neuroretinal rim area and volume, and increase in cup-to-disc area ratios. A third monkey developed a splinter-like disc hemorrhage in one eye. The fourth monkey in the study group did not develop morphologic changes during follow-up, nor did any monkey in the control group. Conclusions.: Experimental and chronic reduction in CSF in monkeys was associated with the development of an optic neuropathy in some monkeys.
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus. Long non-coding RNAs (lncRNAs) are regulators in DN progression. However, the regulatory mechanisms of multiple lncRNAs in DN remain to be determined. Our aim was to investigate the function and molecular mechanism of lncRNA RNA component of mitochondrial RNAase P (Rmrp) in DN. Here, we observed that the expression of Rmrp was up-regulated in the kidney of db/db DN mice and high glucose induced glomerular mesangial cells (MC). More importantly, the abnormal transcription of Rmrp was induced by nuclear transcription factor Sp1, which promotes the proliferation and production of fibrotic markers in MC. Subsequently, we screened the miRNAs related to Rmrp and found that Rmrp and miR-1a-3p are co-localized at the subcellular level of MC, and Rmrp could directly binds to miR-1a-3p. Further mechanism research demonstrated that the elevated miR-1a-3p significantly attenuated the proliferation and fibrosis-promoting effects induced by up-regulation of Rmrp. At the same time, we also investigated that miR-1a-3p can directly bind to Jun D proto-oncogene (JunD), thereby regulating the protein level of JunD. Rmrp-induced proliferation and fibrogenesis were reversed by co-transfection with JunD siRNA. In summary, Sp1 induced lncRNA Rmrp could drive the expression of JunD via sponging miR-1a-3p in DN progression.
Supplementary Table 2 from Comparison of Two Methods for Estimating Absolute Risk of Prostate Cancer Based on Single Nucleotide Polymorphisms and Family History
The aim of the study was to explore the potential role of experimental periodontitis in pulmonary inflammation in mice.Mice were divided into control, ligature-induced periodontitis (L) and ligature plus Porphyromonas gingivalis (P. gingivalis)-induced periodontitis (LPG) groups. Alveolar bone resorption, pulmonary function, lung tissue histology and cytokine expression were examined at 2, 4 and 8 weeks. Then cytokines and neutrophils in the peripheral blood and lung tissue were further assessed at 8 weeks to determine the role of cytokines induced by LPG periodontitis, and the effect of P. gingivalis was evaluated using P. gingivalis-IgG and P. gingivalis gingipain.Alveolar bone resorption was more severe in the L and LPG groups. However, pulmonary inflammation was observed only in the LPG group at 8 weeks when cytokines and neutrophils in the peripheral blood and lung tissue were the most significant elevation, along with higher levels of P. gingivalis-IgG and P. gingivalis gingipain. Cytokine levels were also increased in the gingival tissue, peripheral blood and lung tissue in the L group, accompanied by elevated peripheral blood neutrophils, but not as significantly as that in the LPG group.LPG periodontitis can trigger pulmonary inflammation over the long term, in which cytokines and P. gingivalis play an important role.
Periodontitis is a complex infectious disease with various causes and contributing factors. The aim of this study was to identify key genes, microRNAs (miRNAs) and transcription factors (TFs) and construct a miRNA-mRNA-TF regulatory networks to investigate the underlying molecular mechanism in periodontitis.
This study aimed to investigate a gender-specific association between oral health-related quality of life (OHRQoL) and depressive symptoms in college students, as there are limited relevant studies conducted among youths.