Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is one of the most devastating diseases in the global pig industry due to its high mortality rate in piglets. Maternal vaccines can effectively enhance the gut-mammary gland-secretory IgA axis to boost lactogenic immunity and passive protection of nursing piglets against PEDV challenge. From 2017 to 2021, we collected 882 diarrhea samples from 303 farms in China to investigate the epidemiology of PEDV. The result showed that about 52.15% (158/303) of the farms were positive for PEDV with an overall detection rate of 63.95% (564/882) of the samples. The S1 fragments of S gene from 104 strains were sequenced for the phylogenetic analysis. A total of 71 PEDV strains (68.27%) sequenced in this study were clustered into the predominant G2c subgroup, while the newly-defined G2d strains (9.62%) were identified in three provinces of China. The NH-TA2020 strain of G2c subgroup was isolated and cultured, and its infection to piglets caused watery diarrhea within 24 h, indicating its strong pathogenicity. Oral administration of NH-TA2020 strain to pregnant gilts stimulated high levels of IgA antibody in colostrum. The piglets fed by the gilts above were challenged with NH-TA2020 strain or CH-HeB-RY-2020 strain from G2d subgroup, and the clinical symptoms and virus shedding were significantly reduced compared to the mock group. Our findings suggest that G2c subgroup is the predominant branch circulating in China from 2017 to 2021. Oral administration of NH-TA2020 enhances maternal IgA and lactogenic immune responses, which confer protection against the homologous and emerging G2d PEDV strains challenges in neonates.
Swine enteric coronaviruses pose a significant challenge to the global pig industry, inflicting severe diarrhea and high mortality rates among piglets, and resulting in substantial economic losses. In our clinical practice, we observed that the addition of potassium molybdate (PM) to the feed could dramatically reduce diarrhea and diarrhea-related mortality in piglets. However, the underlying mechanisms remain elusive and merit further investigation. In this study, we revealed that PM effectively inhibited the infection of both aminopeptidase N (APN)-dependent coronaviruses, transmissible gastroenteritis virus (TGEV), and porcine respiratory coronavirus (PRCV), both in vitro and ex vivo. Specifically, PM was found to block TGEV and PRCV penetration by degrading the cell receptor APN through the upregulation of phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) expression. In addition, knockdown and knockout of PIK3C3 resulted in the attenuation of PM-induced autophagy, thereby rescuing APN expression and viral infection. Correspondingly, replenishment of PIK3C3 in PIK3C3-null ST cells restored PM-mediated APN degradation and successfully blocked viral entry. Furthermore, our findings demonstrated that PM promoted the assembly of the PIK3C3-BECN1-ATG14 complex, leading to induced autophagic degradation by upregulating PIK3C3 Ser249 phosphorylation. In vivo experiments further confirmed that PM-induced PIK3C3-mediated autophagic degradation of APN, thereby limiting the pathogenicity of TGEV. In summary, our study for the first time identified the mechanism by which PM blocked TGEV and PRCV internalization by degrading the cell receptor APN via PIK3C3-mediated autophagy. This study provides valuable insights and potential strategies for preventing APN-restricted coronavirus infection.IMPORTANCEAminopeptidase N (APN) is one of the most important host receptors of coronavirus. Modulating APN expression can represent a novel approach for controlling APN-dependent coronaviruses and their variants infection. Here we found that a chemical compound potassium molybdate (PM) negatively regulates APN expression by inducing phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3)-mediated autophagy against APN-dependent coronavirus internalization, including transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV). Furthermore, PM can promote PIK3C3-BECN1-ATG14 complex assembly to induce autophagic degradation of APN by upregulating PIK3C3 Ser249 phosphorylation. Lastly, results from pig experiments also confirmed that PM can trigger PIK3C3-mediated autophagic degradation of APN to restrict TGEV pathogenicity in vivo without toxicity. Our findings underscore the promising potential of PM as an effective agent against APN-dependent coronavirus and potentially emerging viral disease entry.
Swine influenza A virus (swIAV) is a major concern for the swine industry owing to its highly contagious nature and acute viral disease. Currently, most commercial swIAV vaccines are traditional inactivated virus vaccines. The Lactobacillus plantarum-based vaccine platform is a promising approach for mucosal vaccine development. Oral and intranasal immunisations have the potential to induce a mucosal immune response, which confers protective immunity. The aim of this study was to evaluate the probiotic potential and adhesion ability of three L. plantarum strains. Furthermore, a recombinant L. plantarum strain expressing the head domain of swIAV antigen HA1 was constructed and evaluated for its ability to prevent swIAV infection.The three L. plantarum strains isolated from healthy pig faecal samples maintained the highest survival rate when incubated at pH 3 and at bile salt concentration of 0.3%. They also showed high adherence to intestinal cells. All three L. plantarum strains were monitored in live mice, and no major differences in transit time were observed. Recombinant L. plantarum expressed swIAV HA1 protein (pSIP401-HA1-ZN-3) and conferred effective mucosal, cellular and systemic immune responses in the intestine as well as in the upper respiratory airways of mice. In conclusion, the oral and intranasal administration of L. plantarum strain pSIP401-HA1-ZN-3 in mice induced mucosal immunity and most importantly, provided protection against lethal influenza virus challenge.In summary, these findings suggest that the engineered L. plantarum strain pSIP401-HA1-ZN-3 can be considered as an alternative approach for developing a novel vaccine during an swine influenza A pandemic.
Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant diseases affecting the pig industry worldwide. The PRRSV mutation rate is the highest among the RNA viruses. To date, NADC30-like PRRSV and highly pathogenic PRRSV (HP-PRRSV) are the dominant epidemic strains in China; however, commercial vaccines do not always provide sufficient cross-protection, and the reasons for insufficient protection are unclear. This study isolated a wild-type NADC30-like PRRSV, SX-YL1806, from Shaanxi Province. Vaccination challenge experiments in piglets showed that commercial modified live virus (MLV) vaccines provided good protection against HP-PRRSV. However, it could not provide sufficient protection against the novel strain SX-YL1806. To explore the reasons for this phenomenon, we compared the genomic homology between the MLV strain and HP-PRRSV or NADC30-like PRRSV and found that the MLV strain had a lower genome similarity with NADC30-like PRRSV. Serum neutralization assay showed that MLV-immune serum slightly promoted the homologous HP-PRRSV replication and significantly promoted the heterologous NADC30-like PRRSV strain replication in vitro, suggesting that antibody-dependent enhancement (ADE) might also play a role in decreasing MLV protective efficacy. These findings expand our understanding of the potential factors affecting the protective effect of PRRSV MLV vaccines against the NADC30-like strains.