AKT1 is a member of the serine/threoine AGC protein kinase family involved in cancer's metabolism, growth, proliferation, and survival. It is a potential target for cancer gene therapy.In the present study, we used DNAzyme and siRNA technology to inhibit AKT1 expression and evaluated the effects of DNAzymes and siRNA as therapeutic agents to treat leukemic cells. We designed two AKT1 specific DNAzymes (DRz1 and DRz2) and siRNA to test their effects on the apoptosis of leukemic cells.Here, we showed that DRz1 could down-regulate the expression of AKT1 in both mRNA and protein levels, hence significantly inhibiting growth and inducing apoptosis of Jurkat cells.These results provide a significant insight into the potential anticarcinogenic action of DNAzyme against AKT1 which might be used as a valuable therapy to leukemia.
BACKGROUND Glioblastoma multiforme (GBM) is a highly aggressive malignant brain tumor with a high incidence in adults. Connexin43 (Cx43) has general roles in tumorigenesis and is expressed in U251 glioma cells. Accordingly, the effects of Cx43 on the growth, migration, and apoptosis and the underlying mechanisms mediating Cx43-dependent migration and apoptosis were examined in U251 cells. MATERIAL AND METHODS A Cx43-overexpressing U251 cell line was generated to analyze the effects of Cx43 overexpression on cell growth, wound healing, and apoptosis-related protein expression after treatment with temozolomide. RESULTS The growth rate of U251 cells overexpressing Cx43 was significantly lower than that of parental wild-type cells, and cell morphology was considerably altered. The expression level of Bcl-2 was higher and the expression levels of Bax and caspase-3 were lower in cells overexpressing Cx43 than in wild-type cells. Additionally, the Bax/Bcl-2 ratio decreased. CONCLUSIONS Cx43 inhibited the growth of U251 cells, promoted morphological changes and migration, and inhibited apoptosis via a mitochondria-associated pathway.
PURPOSE: To develop a model for studying cerebrovascular disease prevention in elderly women. METHODS: Sixty 18-month-old Sprague Dawley (SD) rats were randomly divided into an estrogen administration group (EA, n=30) and a non-administration group (NA, n=30); thirty 4-month-old SD rats were allocated to a control group. The EA group received estradiol benzoate starting on the 5th day of a 34-day breeding period, and the serum levels of estradiol (E2), estrogen receptor (ER), and malondialdehyde (MDA) were measured. The MCA of each group was then sampled for viscoelastic experiments. RESULTS: The serum levels of E2 and MDA in the EA group showed significant differences compared to those in the control group (p<0.05), while the difference in ER between the EA and control groups was not significant (p>0.05). The decrease in MCA stress at 7,200 s and the increase in strain at 7,200 s in the EA group showed no significant differences compared to the control group (p>0.05). CONCLUSION: Estradiol administration inhibited the formation of lipid peroxidation products and restored middle cerebral arterial viscoelasticity in aged female rats.
Glioblastoma, a notably aggressive brain tumor, is characterized by a brief survival period and resistance to conventional therapeutic approaches. With the recent identification of “Cuproptosis,” a copper-dependent apoptosis mechanism, this study aimed to explore its role in glioblastoma prognosis and potential therapeutic implications. A comprehensive methodology was employed, starting with the identification and analysis of 65 cuproptosis-related genes. These genes were subjected to differential expression analyses between glioblastoma tissues and normal counterparts. A novel metric, the “CP-score,” was devised to quantify the cuproptosis response in glioblastoma patients. Building on this, a prognostic model, the CP-model, was developed using Cox regression techniques, designed to operate on both bulk and single-cell data. The differential expression analysis revealed 31 genes with distinct expression patterns in glioblastoma. The CP-score was markedly elevated in glioblastoma patients, suggesting an intensified cuproptosis response. The CP-model adeptly stratified patients into distinct risk categories, unveiling intricate associations between glioblastoma prognosis, immune response pathways, and the tumor’s immunological environment. Further analyses indicated that high-risk patients, as per the CP-model, exhibited heightened expression of certain immune checkpoints, suggesting potential therapeutic targets. Additionally, the model hinted at the possibility of personalized therapeutic strategies, with certain drugs showing increased efficacy in high-risk patients. The CP-model offers a promising tool for glioblastoma prognosis and therapeutic strategy development, emphasizing the potential of Cuproptosis in cancer treatment.
Intratracheal administration of low molecular mass (LMM) hyaluronan (200 kDa) results in greater neutrophil infiltration in the lungs of TLR4(-/-) mice compared with that in wild-type mice. In general, enhanced neutrophil infiltration in tissue is due to cell influx; however, neutrophil apoptosis also plays an important role. We have assessed the effects of TLR4 in the regulation of neutrophil apoptosis in response to administration of LMM hyaluronan. We found that apoptosis of inflammatory neutrophils is impaired in TLR4(-/-) mice, an effect that depends upon the IFN-β-mediated TRAIL/TRAILR system. IFN-β levels were decreased in LMM hyaluronan-treated TLR4-deficient neutrophils. The treatment of inflammatory neutrophils with IFN-β enhanced the levels of TRAIL and TRAILR 2. LMM hyaluronan-induced inflammatory neutrophil apoptosis was substantially prevented by anti-TRAIL neutralizing mAb. We conclude that decreased IFN-β levels decrease the activity of the TRAIL/TRAILR system in TLR4-deficient neutrophils, leading to impaired apoptosis of neutrophils and resulting in abnormal accumulation of neutrophils in the lungs of LMM hyaluronan-treated mice. Thus, TLR4 plays a novel homeostatic role in noninfectious lung inflammation by accelerating the elimination of inflammatory neutrophils.
Low m.w. hyaluronan (LMW HA) has been shown to elicit the expression of proinflammatory cytokines and chemokines in various cells in vitro. However, the effects of this molecule in vivo are unknown. In this study, we report that intratracheal administration of LMW HA (200 kDa) causes inflammation in mouse lung. A lack of TLR4 is associated with even stronger inflammatory response in the lung as shown by increased neutrophil counts and elevated cytokine and chemokine concentrations. We also demonstrate that TLR4 anti-inflammatory signaling is dependent upon a MyD88-independent pathway. TLR4-mediated IL-1R antagonist production plays a negative regulatory role in LMW HA (200 kDa) induced lung inflammation. These data provide a molecular level explanation for the function of TLR4 in LMW HA (200 kDa)-induced lung inflammation, as inhibition of the beta form of pro-IL-1 promotes an anti-inflammatory response.