Learning/memory impairment is one of the most serious problems induced by stress, and the underlying mechanisms remain unclear. Opiates and opioid receptors are implicated in multiple physiological functions including learning and memory. However, there is no clear evidence whether the endogenous opioid system is involved in the formation of the stress-induced spatial reference memory impairment. The aim of the present study was to evaluate the role of μ opioid receptor in the stress-induced spatial reference memory impairment by means of Morris water maze (MWM) test in a mouse elevated platform stress model. The mice were trained in the MWM for four trials a session for 4 consecutive days after receiving the elevated platform stress, and intracerebroventricular injection of μ opioid receptor agonist DAMGO, antagonist CTAP or saline. Retention of the spatial training was assessed 24 h after the last training session with a 60-s free-swim probe trial using a new starting position. The results showed that intracerebroventricular injection of μ opioid receptor agonist DAMGO but not antagonist CTAP before MWM training impaired the memory retrieval of mice. Elevated platform stress before MWM training also impaired memory retrieval, which could be reversed by pre-injection of CTAP, and aggravated by DAMGO. These results suggest that endogenous opioid system may play a crucial role in the formation of the stress-induced memory impairment.
Targeting nanoparticles (NPs) based on the specific binding of ligands with molecular targets provides a promising tool for tissue-selective drug delivery. However, the number of molecular targets on the cell surface is limited, hindering the number of NPs that can bind and, thus, limiting the therapeutic outcome. Although several strategies have been developed to enhance drug delivery, such as enhancing drug loading and circulation time or increasing the enhanced permeability and retention effect of nanocarriers, none have resolved this issue. Herein, we designed a simple method for amplified and targeted drug delivery using two matched NPs. One NP was aptamer-functionalized to specifically bind to target cells, while the other was aptamer-complementary DNA-functionalized to specifically bind to aptamer-NPs. Alternate administration of the two matched NPs enables their continuous accumulation in the disease site despite their limited molecular targets. As a proof of concept, the method was tested in a breast cancer model and significantly enhanced chemotherapy of tumor cells in vitro and in vivo. The potential applications of this method in a brain injury model were also demonstrated. Overall, the study describes a method for amplified targeted drug delivery independent of the target number.
Abstract Background The niche of tissue development in vivo involves the growth matrix, biophysical cues and cell-cell interactions. Although natural extracellular matrixes may provide good supporting for seeding cells in vitro, it is evitable to destroy biophysical cues during decellularization. Reconstructing the bioactivities of extracellular matrix-based scaffolds is essential for their usage in tissue repair. Results In the study, a hybrid hydrogel was developed by incorporating single-wall carbon nanotubes (SWCNTs) into heart-derived extracellular matrixes. Interestingly, insoluble SWCNTs were well dispersed in hybrid hydrogel solution via the interaction with extracellular matrix proteins. Importantly, an augmented integrin-dependent niche was reconstructed in the hybrid hydrogel, which could work like biophysical cues to activate integrin-related pathway of seeding cells. As supporting scaffolds in vitro, the hybrid hydrogels were observed to significantly promote seeding cell adhesion, differentiation, as well as structural and functional development towards mature cardiac tissues. As injectable carrier scaffolds in vivo, the hybrid hydrogels were then used to delivery stem cells for myocardial repair in rats. Similarly, significantly enhanced cardiac differentiation and maturation(12.5 ± 2.3% VS 32.8 ± 5%) of stem cells were detected in vivo, resulting in improved myocardial regeneration and repair. Conclusions The study represented a simple and powerful approach for exploring bioactive scaffold to promote stem cell-based tissue repair. Graphic abstract
Reactive oxygen species (ROS), which were largely generated after myocardial ischemia, severely impaired the adhesion and survival of transplanted stem cells. In this study, we aimed to determine whether Exendin-4 pretreatment could improve the adhesion and therapeutic efficacy of transplanted adipose derived stem cells (ADSCs) in ischemic myocardium. In vitro, H2O2 was used to provide ROS environments, in which ADSCs pretreated with Exendin-4 were incubated. ADSCs without pretreatment were used as control. Then, cell adhesion and viability were analyzed with time. Compared with control ADSCs, Exendin-4 treatment significantly increased the adhesion of ADSCs in ROS environment, while reduced intracellular ROS and cell injury as determined by dihydroethidium (DHE) staining live/Dead staining, lactate dehydrogenase-release assay and MTT assay. Western Blotting demonstrated that ROS significantly decreased the expression of adhesion-related integrins and integrin-related focal adhesion proteins, which were significantly reversed by Exendin-4 pretreatment and followed by decreases in caspase-3, indicating that Exendin-4 may facilitate cell survival through enhanced adhesion. In vivo, myocardial infarction (MI) was induced by the left anterior descending artery ligation in SD rats. Autologous ADSCs with or without Exendin-4 pretreatment were injected into the border area of infarcted hearts, respectively. Multi-techniques were used to assess the beneficial effects after transplantation. Longitudinal bioluminescence imaging and histological staining revealed that Exendin-4 pretreatment enhanced the survival and differentiation of engrafted ADSCs in ischemic myocardium, accompanied with significant benefits in cardiac function, matrix remodeling, and angiogenesis compared with non-pretreated ADSCs 4 weeks post-transplantation. In conclusion, transplantation of Exendin-4 pretreated ADSCs significantly improved cardiac performance and can be an innovative approach in the clinical perspective.
Recently, the presence of telocytes was demonstrated in human and mammalian tissues and organs (digestive and extra-digestive organs, genitourinary organs, heart, placenta, lungs, pleura, striated muscle). Noteworthy, telocytes seem to play a significant role in the normal function and regeneration of myocardium. By cultures of telocytes in two- and three-dimensional environment we aimed to study the typical morphological features as well as functionality of telocytes, which will provide important support to understand their in vivo roles. Neonatal rat cardiomyocytes were isolated and cultured as seeding cells in vitro in two-dimensional environment. Furthermore, engineered myocardium tissue was constructed from isolated cells in three-dimensional collagen/Matrigel scaffolds. The identification of telocytes was performed by using histological and immunohistochemical methods. The results showed that typical telocytes are distributed among cardiomyocytes, connecting them by long telopodes. Telocytes have a typical fusiform cell body with two or three long moniliform telopodes, as main characteristics. The vital methylene blue staining showed the existence of telocytes in primary culture. Immunohistochemistry demonstrated that some c-kit or CD34 immuno-positive cells in engineered heart tissue had the morphology of telocytes, with a typical fusiform cell body and long moniliform telopodes. Also, a significant number of vimentin+ telocytes were present within engineered heart tissue. We suggest that the model of three-dimensional engineered heart tissue could be useful for the ongoing research on the functional relationships of telocytes with cardiomyocytes. Because the heart has the necessary potential of changing the muscle and non-muscle cells during the lifetime, telocytes might play an active role in the heart regeneration process. Moreover, telocytes might be a useful tool for cardiac tissue engineering.
Abstract Low‐intensity pulsed ultrasound (LIPUS) and electrical stimulation (ES) are effective methods that promote neural repair. However, ES usually requires electrode implantation and a power supply, which are an inconvenience to future applications. Meanwhile, it is difficult to combine ultrasound and ES through traditional methods. Herein, a nanopatch consisting of an oriented barium titanate (BTO)‐incorporated polycaprolactone (PCL) nanofiber membrane for electricity generation and a layer of graphene oxide (GO)‐doped gelatin methacryloyl (GelMA) for neural interaction is developed. This band‐aid‐like BTO@PCL/GO@GelMA nanopatch has an excellent piezoelectric performance. In vitro, the nanopatches significantly promote axonal growth under LIPUS treatment. In a rat model of erectile dysfunction caused by peripheral nerve injury, the nanopatch is easily attached to a damaged nerve similar to a band‐aid. With the assistance of ultrasound, some mechanical energy is converted into electricity by the nanopatch, and synergistic neural stimulation of ultrasound and electricity is achieved. In this way, the nanopatch significantly promoted corpus cavernosum nerve repair, resulting in the improvement of tissue structure and erectile function as well as increased conception rate in female rats. In conclusion, the nanopatch offers a synergistic ultrasound‐ES for nerve repair easily and represents a novel strategy for peripheral nerve repair.
Catheter-associated urinary tract infection (CAUTI) is a common clinical problem, especially during long-term catheterization, causing additional pain to patients. The development of novel antimicrobial coatings is needed to prolong the service life of catheters and reduce the incidence of CAUTIs. Herein, we designed an antimicrobial catheter coated with a piezoelectric zinc oxide nanoparticles (ZnO NPs)-incorporated polyvinylidene difluoride-hexafluoropropylene (ZnO-PVDF-HFP) membrane. ZnO-PVDF-HFP could be stably coated onto silicone catheters simply by a one-step solution film-forming method, very convenient for industrial production. In vitro, it was demonstrated that ZnO-PVDF-HFP coating could significantly inhibit bacterial growth and the formation of bacterial biofilm under ultrasound-mediated mechanical stimulation even after 4 weeks. Importantly, the on and off of antimicrobial activity as well as the strenth of antibacterial property could be controlled in an adaptive manner via ultrasound. In a rabbit model, the ZnO-PVDF-HFP-coated catheter significantly reduced the incidence CAUTIs compared with clinically-commonly used catheters under assistance of ultrasonication, and no side effect was detected. Collectively, the study provided a novel antibacterial catheter to prevent the occurance of CAUTIs, whose antibacterial activity could be controlled in on-demand manner, adaptive to infection situation and promising in clinical application.
This study aims to comprehensively evaluate the clinical utility of five diffusion models, including conventional mono-exponential (Mono), intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), stretched exponential (SEM), and continuous-time random-walk (CTRW), for preoperatively predicting of breast lesion pathology, prognostic biomarkers, and molecular subtypes. We retrospectively analyzed 132 patients with pathologically verified breast lesions (41 benign and 91 malignant) who underwent a full protocol preoperative breast MRI protocol, including a diffusion-weighted imaging (DWI) sequence with nine b values (0 to 2000 s/mm2) on a 3.0T MR scanner. The diffusion parameters from each model-Mono (ADC), IVIM (D, D*, f), DKI (MD, MK), SEM (DDC, α) and CTRW (Dm, α, β)-were quantitatively calculated and compared between benign and malignant breast lesions, as well as across different prognostic biomarker statuses in breast cancer, using Mann-Whitney U-tests. For molecular subtypes comparisons, we employed the Kruskal-Wallis test followed by Bonferroni. All parameters, except IVIM-D*, significantly differentiated benign from malignant lesions. Notably, IVIM-D and DKI-MK values were significantly different between estrogen receptor (ER)-positive and ER-negative tumors. Progesterone receptor (PR)-positive cancers exhibited lower Mono-ADC, IVIM-D, DKI-MD, SEM-DDC, CTRW-Dm, and CTRW-α values, alongside higher DKI-MK value compared to PR-negative cancers (p < 0.05). Significant differences in IVIM-D, IVIM-D*, and DKI-MK values were observed between human epidermal growth factor receptor 2 (HER2)-negative and HER2-positive tumors. Furthermore, higher SEM-α and CTRW-β values, along with lower DKI-MD and SEM-DDC values, were noted in the high Ki-67 expression group compared to the low Ki-67 group (p < 0.05). All five diffusion models proved valuable for breast cancer diagnosis, with the CTRW model exhibiting the highest diagnostic performance, although the difference was not statistically significant. The diffusion parameters derived from these models can effectively assist in distinguishing prognostic factors and molecular subtypes of breast cancer.