AimTo investigate the information about Y-structural variants (SVs) in the general population that could be obtained by low-coverage whole-genome sequencing.MethodsWe investigated SVs on the male-specific portion of the Y chromosome in the 70 individuals from Africa, Europe, or East Asia sequenced as part of the 1000 Genomes Pilot project, using data from this project and from additional studies on the same samples. We applied a combination of read-depth and read-pair methods to discover candidate Y-SVs, followed by validation using information from the literature, independent sequence and single nucleotide polymorphism-chip data sets, and polymerase chain reaction experiments.ResultsWe validated 19 Y-SVs, 2 of which were novel. Non-reference allele counts ranged from 1 to 64. The regions richest in variation were the heterochromatic segments near the centromere or the DYZ19 locus, followed by the ampliconic regions, but some Y-SVs were also present in the X-transposed and X-degenerate regions. In all, 5 of the 27 protein-coding gene families on the Y chromosome varied in copy number.ConclusionsWe confirmed that Y-SVs were readily detected from low-coverage sequence data and were abundant on the chromosome. We also reported both common and rare Y-SVs that are novel.
By using inter-simple sequence(ISSR) markers,this paper studied the genetic diversity and clonal structure of two Heleocharis valleculosa f.setosa populations(120 individuals) in Poyang Lake.By five primers,85 fragments were amplified,of which 49(57.65%) were polymorphic.As a result,a relatively high level of genetic diversity was revealed(H=0.1545,I=0.2400,at species level),but a low level of genetic differentiation was detected between the two populations(GST=0.0201).High clonal diversity was detected but no common genotype found between the two populations,which meant great clonal differentiation.In both populations,the spatial genetic structure were found as a random mode.
Abstract The H10 subtypes of avian influenza viruses pose a continual threat to the poultry industry and human health. The sporadic spillover of H10 subtypes viruses from poultry to humans is represented by the H10N8 human cases in 2013 and the recent H10N3 human infection in 2021. However, the genesis and characteristics of the recent reassortment H10N3 viruses have not been systemically investigated. In this study, we characterized 20 H10N3 viruses isolated in live poultry markets during routine nationwide surveillance in China from 2014 to 2021. The viruses in the recent reassortant genotype acquired their hemagglutinin (HA) and neuraminidase (NA) genes from the duck H10 viruses and H7N3 viruses, respectively, whereas the internal genes were derived from chicken H9N2 viruses as early as 2019. Receptor‐binding analysis indicated that two of the tested H10N3 viruses had a higher affinity for human‐type receptors than for avian‐type receptors, highlighting the potential risk of avian‐to‐human transmission. Animal studies showed that only viruses belonging to the recent reassortant genotype were pathogenic in mice; two tested viruses transmitted via direct contact and one virus transmitted by respiratory droplets in guinea pigs, though with limited efficiency. These findings emphasize the need for enhanced surveillance of H10N3 viruses.
Abstract Background We investigated the long-term effects and safety of botulinum toxin-A (BTX-A) for treating trigeminal neuralgia (TN). We also studied long-term maintenance of this therapeutic effect. Methods A visual analog scale (VAS) score, pain attack frequency per day, patient’s overall response to treatment and side effects during 14-month follow-up were evaluated in 88 patients with TN receiving BTX-A. The primary endpoints were pain severity (assessed by VAS) and pain attack frequency per day. The secondary endpoint was the patient’s overall response to treatment, assessed using the Patient Global Impression of Change. The influence of different doses (≤50, 50–100 and ≥100 U) on the therapeutic effect was evaluated. Results Treatment was deemed “effective” within 1 month in 81 patients and at 2 months in 88 patients (100%). The shortest period of effective treatment was 3 months, and complete control of pain was observed in a maximum of 46 patients. The therapeutic effect decreased gradually after 3 months, and the prevalence of effective treatment at 14 months was 38.6%, with complete control of pain seen in 22 patients (25%). There was no significant difference in the prevalence of effective treatment between different dose groups at identical time points (p > 0.05). Three patients showed swelling at injection sites and 10 patients showed facial asymmetry, both of which disappeared spontaneously without special treatment. Conclusion Local subcutaneous injection of BTX-A for TN treatment has considerable therapeutic effects lasting several months and is safe for this indication. At least one-quarter of patients maintained complete analgesia. The maintenance period of the therapeutic effect may be related to the reduction in the VAS score after the first injection of BTX-A.
Brucellosis is a zoonotic disease caused by Brucella. There is no effective vaccine against human brucellosis. Omp19 and Omp25 are the outer membrane proteins of Brucella. They are widely expressed and highly conserved in Brucella and have high immunogenicity. Herein, we aim to identify multi-epitope vaccine candidates based on Omp19 and Omp25. We analyzed the physicochemical properties and protein structure of Omp19 and Omp25, and predicted the corresponding B cell and T cell epitopes using bioinformatics analysis. Omp19 and Omp25 were composed of 177 amino acids and 213 amino acids, respectively. They were both stable hydrophilic proteins. The instability indices were 44.8 and 23, respectively. The hydrophilicity was -0.1 and -0.317, respectively. In the secondary structure of Omp19 and Omp25 proteins, the α-helix accounted for 12.43% and 23.94%, the β-sheet was 18.64% and 23.47%, the β-turn was 6.78% and 4.23%, and the random coil was 62.15% and 48.36%. Finally, 5 B cell epitopes, 3 Th-cell epitopes and 5 CTL cell epitopes of Omp19 protein, and 4 B cell epitopes, 3 Th-cell epitopes, and 5 CTL cell epitopes of Omp25 protein were selected as vaccine candidates. In conclusion, we obtained potential B cell and T cell epitopes of the Brucella outer membrane Omp19 and Omp25 proteins. This lays the foundation for the further design of multi-epitope vaccine of Brucella.
Abstract Vertebrates diverged from other chordates approximately 500 million years ago and have adopted several modifications of developmental processes. Amphioxus is widely used in evolutionary developmental biology research, such as on the basic patterning mechanisms involved in the chordate body plan and the origin of vertebrates. The fast development of next-generation sequencing has advanced knowledge of the genomic organization of amphioxus; however, many aspects of gene regulation during amphioxus development have not been fully characterized. In this study, we applied high-throughput sequencing on the transcriptomes of 13 developmental stages of Chinese amphioxus to gain a comprehensive understanding of transcriptional processes occurring from the fertilized egg to the adult stage. The expression levels of 3,423 genes were significantly changed (FDR ≤ 0.01). All of these genes were included in a clustering analysis and enrichment of biological functions associated with these clusters was determined. Significant changes were observed in several important processes, including the down-regulation of the cell cycle and the up-regulation of translation. These results should build a foundation for identifying developmentally important genes, especially those regulatory factors involved in amphioxus development and advance understanding of the developmental dynamics in vertebrates.
Background: Advances in sequencing and genotyping technologies are leading to the widespread availability of multi-species variation data, dense genotype data and large-scale resequencing projects. The 1000 Genomes Project and similar efforts in other species are challenging the methods previously used for storage and manipulation of such data necessitating the redesign of existing genome-wide bioinformatics resources. Results: Ensembl has created a database and software library to support data storage, analysis and access to the existing and emerging variation data from large mammalian and vertebrate genomes. These tools scale to thousands of individual genome sequences and are integrated into the Ensembl infrastructure for genome annotation and visualisation. The database and software system is easily expanded to integrate both public and non-public data sources in the context of an Ensembl software installation and is already being used outside of the Ensembl project in a number of database and application environments. Conclusions: Ensembl's powerful, flexible and open source infrastructure for the management of variation, genotyping and resequencing data is freely available at http://www.ensembl.org.