This study investigated the influence of dietary supplementation with some antibiotic alternatives on growth performance, intestinal barrier, and immunity of lipopolysaccharide (LPS) challenged chicks. Wenshi females, aged 4 days, were allocated randomly into eight groups, each with six replicates of 20 birds (n = 120/treatment), which received a basal diet supplemented with 0 (control), 0 (LPS), 200 mg/kg aureomycin, 50 mg/kg mushroom polysaccharide, 100 mg/kg mushroom polysaccharide, 500 mg/kg nano-copper, 300 mg/kg copper loaded chitosan, and 500 mg/kg lysozyme for 21 days. On day 18 and 20, the control birds were injected with 0.5 mL saline solution, the other treatments were injected with 0.5 mL saline containing 500 µg LPS/kg body weight (BW). The results indicated that LPS treatment reduced the BW, average daily gain (ADG), and daily feed intake (ADFI) than the controls (p < 0.05), and the antibiotic and the tested alternatives could not retrieve the normal BW, ADG, and ADFI. The tested additives reduced several negative effects of LPS; they reduced diamine oxidase activity and inflammatory mediators in plasma, jejunal mucosa, spleen and thymus, increased content of immunoglobulin in plasma and jejunal mucosa, and decreased gene expression of inducible nitric oxide synthase and Cyclooxygenase 2 in jejunal mucosa.
The effects of dietary vitamin A (VA) supplementation on reproductive performance, VA deposition, and potential mechanisms of action were studied in Chinese yellow-feathered broiler breeders. A total of 528 yellow-feathered broiler breeders that were 46 wk old were fed a corn–soybean meal basal diet supplemented with 0; 5,400; 10,800; or 21,600 IU/kg VA for 9 wk. Each dietary treatment had 6 replicates with 22 birds per replicate. After 7 wk of treatment, 60 settable eggs per replicate were collected for hatching. The results showed that dietary VA improved the laying rate, egg-to-feed ratio, and hatch weight of offspring (P < 0.05). Hepatic retinyl palmitate in broiler breeders and hatchlings (within 12 h) increased with increasing VA (P < 0.05). VA supplementation increased insulin-like growth factor 1 (IGF-I) receptor transcripts in the ovarian stroma and the walls of yellow follicles, follicle stimulating hormone (FSH) receptor expression in the walls of white and yellow follicles, and luteinizing hormone (LH) receptor and growth hormone (GH) receptor transcripts in the walls of yellow follicles (P < 0.05). Caspase-3 and Fas mRNA levels in the ovarian stroma and the walls of white and yellow follicles decreased with VA supplementation (P < 0.05). The relative expression of retinol dehydrogenase 10 (RDH10) transcripts in the walls of white follicles increased with 5,400 IU/kg VA supplementation (P < 0.05). Supplemental 21,600 IU/kg VA increased cytochrome P450 26A1 (CYP26A1) transcripts in the ovarian stroma and the walls of white follicles (P < 0.05). Dietary VA elevated retinoic acid receptor α (RARα) expression in the ovarian stroma and the walls of yellow follicles and retinoid X receptor α (RXRα) expression in the walls of yellow follicles. It was concluded that VA supplementation improved reproductive performance and hepatic storage of VA, and this was associated with the regulation of ovarian hormone receptor expression and suppression of apoptosis gene transcripts through its active metabolite retinoic acid (RA). The optimal dietary VA level for Chinese yellow-feathered broiler breeders at 46 to 54 wk of age was found to be 10,800 IU/kg.
An experiment was undertaken to evaluate the effect of dietary selenium (Se) levels on growth performance and immune competence of broilers under heat stress. Birds were raised in either a thermoneutral (TN, 23.9 degrees C constant) or heat stress conditions (HS, 23.9 degrees C to 38 degrees C cycling) and were fed a corn-soybean meal basal diet supplemented with Se at 0, 0.2 and 0.4 mg/kg. A total of 240 one-day-old male broiler chicks were randomly assigned to six groups; each group had four replicates of 10 birds. Body weight and feed intake were not influenced by dietary Se, while feed conversion was significantly improved by a Se-supplementation of 0.2 mg/kg. HS significantly reduced body weight, feed intake and feed conversion. Numbers of abdominal exudate cells (AEC), percentage of macrophages in AEC, phagocytic macrophages, internalized opsonised and unopsonised sheep red blood cells (SRBC) were significantly increased by dietary Se. Both primary and secondary antibody responses were characterised by increasing titres of antibody to SRBC by dietary Se when birds were exposed to HS (p < 0.05). Lymphoid organ weights, antibody responses, incidence of macrophages in AEC, and phagocytic ability of macrophages were also significantly reduced under HS. These results indicated that HS severely reduced growth performance and immunocompetence of broilers, whereas the immune response of broilers improved by dietary Se supplementation under HS.
This study was aimed to investigate whether 1-deoxynojirimycin (DNJ) affects the digestion system of young geese and assess whether mulberry leaf, which contains this substance, has disadvantages that compromise its value as poultry feed. One hundred and twenty-eight 12-day-old male Wanxi white geese were randomly assigned into 4 treatment groups. The control group was fed an ordinary diet without DNJ. The other groups namely L-DNJ, M-DNJ, and H-DNJ had their basic diets supplemented with 0.05 mg/g, 0.1 mg/g, and 0.15 mg/g DNJ, respectively. The geese were fed for 6 wk, and the apparent digestibility test was conducted in the last week. Intestinal parameters, digestive organs, and enzymes were determined. 16S rRNA gene sequencing was conducted for cecal flora composition. The results revealed that DNJ decreased body and liver weight and increased feed conversion ratio in comparison with the control (P < 0.05); however, it did not influence the weight and length of the intestine or the pancreas weight. The utilization of organic matter, metabolizable energy, ether extract, acid detergent fiber, and calcium in feed were reduced in the M-DNJ and L-DNJ groups compared with those in the control (P < 0.05); however, the utilization of crude protein was increased in all DNJ-treated groups (P < 0.01). In the H-DNJ group, the usage of soluble phosphorus was also increased (P < 0.05). High-dose DNJ increased the activity of trypsin in the pancreas but reduced those of amylase (P < 0.05) and lipase (P > 0.05) in the pancreas and duodenum. The intestinal villi were short, even impaired, in DNJ-treated groups. High-throughput sequencing data revealed that DNJ supplement reduced the α-diversity indices of the cecal microbiota. The principal component analysis further suggested a difference in community structure between the DNJ treatment groups and control. High-dose DNJ increased the relative abundance of Bacteroides, Escherichia-Shigella, and Butyricicoccus but reduced that of unclassified Ruminococcaceae compared with the control (P < 0.05). In conclusion, changes in the digestive system caused by DNJ seriously affected the metabolism of nutrients in geese and reduced their growth performance. Attention should be paid to the adverse effects of DNJ when using mulberry leaves as poultry feed.
Abstract Data from 655 treatments of 116 studies were used in a meta‐analysis to determine the daily digestible energy (DE), metabolizable energy (ME) and net energy (NE) intake of Chinese growing–finishing pigs, and to predict feed efficiency responses to change in dietary DE, ME and NE. Three alternative functions (i.e., polynomial, Bridges and asymptotic function) were employed for fitting daily DE, ME or NE intakes to mean body weight. The results showed that the three models from the current study provided reasonable fit (all R 2 > 0.83) for the energy intake data. However, under the same energy system, the polynomial function had the smallest Akaike's information criteria (AIC) and residual standard deviation (RSD), followed by Bridges and asymptotic functions. The three model‐generated energy intakes of growing pigs were significantly less than that of the Chinese Feeding Standard of Swine, but similar to that of the National Research Council (2012), while the values of finishing pigs were greater than both standards. Compared with those that predict feed efficiency based on DE or ME, the equation with NE as a predictor had the minimized AIC and RSD. It was also found that feed efficiency increased with increasing dietary energy density (DED), but this response varied with pig body weight, and the lighter pigs were more sensitive to DED than heavier pigs.
This study evaluated the effect of the dietary replacement of 1% lard (CT) with 1% perilla oil (PO), 0.9% perilla oil + 0.1% anise oil (PA), or 0.9% perilla oil + 0.1% ginger oil (PG) on indices of lipid metabolism, antioxidant capacity, meat quality, and fatty acid profiles from Yellow-feathered chickens at day 63. Compared with the CT chickens, those given perilla oil had decreased (P < 0.05) plasma lipid levels including triglycerides (TG), total cholesterol (TCH), and low-density lipoprotein cholesterol (LDL-C). Hepatic TG, TCH levels, and fatty acid synthase activity were also decreased (P < 0.05) in chickens fed diets containing perilla oil. Abdominal fat percentage was significantly decreased in birds fed the PG compared to CT diets. Birds fed the PA or PG diets had increased (P < 0.05) hepatic total SOD, glutathione peroxidase, and glutathione-S-transferase than in chickens given PO alone. In addition, the content of reduced glutathione (GSH) in breast muscle was lower (P < 0.05) in birds fed PO compared with those given PG, and the reverse was true for content of malondialdehyde. Compared with the CT diet, the PO diet decreased breast muscle shear values and increased yellowness (b*) of breast muscle (P < 0.05). Birds fed the PA or PG diets had meat with better overall acceptability than those fed the CT diet. Chickens fed perilla oil diets exhibited higher contents of α-linolenic acid (C18:3n-3), DHA (22:6n-3), polyunsaturated fatty acids, and n-3 fatty acids, together with a lower content of myristic acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0), total saturated fatty acids, and n-6/n-3 ratio compared to controls (P < 0.05). These findings indicate that perilla oil has the potential to decrease lipid-related indices and improve fatty acid profiles of breast meat in chickens without adverse effect on antioxidant status or meat quality; this was even better when perilla oil was given together with anise oil or ginger oil.
Abstract Chickens reared in high altitude regions suffer from a high mortality, possibly due to poor immune responses induced by hypoxia. This experiment was conducted to evaluate whether increasing the oxygen level or administration of a probiotic could improve mortality and immune response of chickens at high altitude (2,986 m above the sea level). One-d-old chickens were randomly allocated to 1 of 6 treatments in a 2 × 3 factorial arrangement. The first factor was the oxygen level (low and high), while the second factor was the diet (basal diet, basal diet containing aureomycin, and basal diet plus L. plantarum ). Increasing the oxygen level significantly reduced the mortality and improved immune responses. The levels of IgA, IgG, IL-10 and anti-BSA antibodies were significantly higher, while IL-1β, LITAF were significantly lower in chickens reared in the high-oxygen room. In the low-oxygen room, L. plantarum significantly decreased the mortality of chickens compared with the other 2 groups. Moreover, L. plantarum significantly increased the levels of IgA, anti-BSA antibodies, IL-10 and decreased IL-1β, LITAF compared with the control group. These results demonstrated that increasing oxygen level or administration of L. plantarum can improve health status of chickens in high altitude regions.
This study evaluated the effects of different dietary metabolizable energy (ME) concentrations on the meat quality, carcass traits, volatile flavour and lipid metabolism-related gene expression levels in yellow-feathered chickens. In total, 600 Huxu female chickens aged 90 days were randomly assigned to six dietary treatments, each with 10 replicates of 10 birds. During the finisher phase, the birds were fed diets containing 2880 (low), 2940, 3000, 3060, 3120 and 3180 (high) kcal ME/kg. The results showed that the average daily gain of chickens increased as the dietary ME concentration increased, while the feed to gain improved (p < 0.05), and the intramuscular fat content of breast muscle increased (p < 0.05). The energy concentration had no effect on the breast muscle pH (45 min and 24 h), colour parameter (L*) or percentage of drip loss (p > 0.05), but the shear force values decreased significantly (p < 0.05). The diameter and area of the breast muscle fiber decreased and the muscle fibre density increased as the dietary ME concentration increased (p < 0.05). The highest ME concentration (3180 kcal) increased the percentages of aldehydes (hexanal, heptanal, 2,4-nonadienal, octanal, nonanal and 2-decenal), alcohols (2-nonen-1-ol, trans-2-undecen-1-ol, 7-hexadecenal, 2-hexyl-1-decanoal and n-nonadecanol-1,3,7,11-trimethyl-1-dodecanol), alkanes (2,6-dimethyl-heptadecane) and carboxylic acids (9-hexadecenoic acid), but reduced the percentages of octadecanal, octadecane, heneicosane and tetradecanal (p < 0.05). In addition, the mRNA gene expression levels of fatty acid-binding protein 3 and apolipoprotein B were significantly upregulated in the liver, whereas that of cholesteryl ester transfer protein was significantly downregulated. In conclusion, increasing the ME diet to 3180 kcal/kg significantly improved the quality and flavour of the meat from yellow-feathered broilers. our finding may help poultry producers to improve the taste of meat by regulating genes related to lipid metabolism, thereby achieving the flavour and taste characteristics preferred by consumers.
The aim of this study was to evaluate the effects of maternal and dietary vitamin A (VA) level on growth performance, meat quality, antioxidant status, and immune function of offspring broilers. Chinese yellow-feathered breeder hens were fed a basal diet supplemented with 0, 5,400, 10,800, and 21,600 IU/kg VA for 8 wk, with 6 replicates of 22 hens per replicate. Then the offspring hatched from each of the 4 maternal groups were fed a basal diet supplemented with 0 or 5,000 IU/kg VA for 63 D. Overall, there were 8 treatment combinations, each with 6 replicate pens of 20 birds. Results showed that (1) providing VA in offspring diets increased final body weight (FW), average daily gain, and average daily feed intake but reduced feed-to-gain ratio and mortality of offspring broilers (P < 0.05), whereas maternal provision of VA did not significantly affect the growth performance and mortality of offspring broilers. Maternal or offspring VA did not affect proportion of breast or thigh muscle (P > 0.05). (2) Maternal feeding with 21,600 IU/kg VA increased (P < 0.05) pH 24 h postmortem of breast muscle, compared with those without maternal supplication of VA. Dietary provision of 5,000 IU/kg VA in the posthatching diet decreased (P < 0.05) drip loss, yellowness (b∗) value and lightness (L∗) value, and increased shear force and pH of breast muscle compared with those without dietary VA supplication. (3) Maternal or offspring VA did not affect the activities of total superoxide dismutase and glutathione peroxidase (GSH-Px) or the content of malondialdehyde; however, there was a significant interaction (P < 0.05) between maternal and offspring VA on the activity of GSH-Px in serum. (4) Dietary provision of 5,000 IU/kg VA increased (P < 0.05) the weight proportion of liver and bursa of fabricius, whereas maternal feeding with 21,600 IU/kg VA increased the hatchling BW. Maternal feeding with 5,400 and 21,600 IU/kg VA decreased (P < 0.05) splenic interferon-γ (IFN-γ) transcripts and increased (P < 0.05) those of interleukin-2 (IL-2) in the progeny. There were interactions (P < 0.05) between maternal and offspring VA on splenic IL-2, IL-1β, and IFN-γ expression. In summary, maternal and offspring provision of VA both had influence on meat quality and immune function in progeny broilers. Dietary VA increased growth performance, whereas the maternal VA affected the initial body weight of progeny when hatched, but the difference in performance caused by maternal VA level was able to be eliminated by dietary VA supplementation. Therefore, offspring provision had greater importance than maternal VA in the production; however, both should be considered in broiler nutrition to achieve good meat quality and immune status of broilers.
The aim of this experiment was to study the antioxidant capacity of Lactobacillus plantarum JM113 isolated from healthy intestinal contents of Tibetan chicken and its protective effect on broiler chickens challenged with deoxynivalenol (DON). Compared with L. plantarum PZ01 and Enterococcus fecalis M23, L. plantarum JM113 demonstrated maximum reducing (P < 0.05) activity and resistance in the presence of 1.2 mmol/L hydrogen peroxide, and great scavenging ability (P < 0.05) against hydroxyl, superoxide anion, and 1,1-diphenyl-2-picrylhydrazyl radicals in vitro. For each strain, the antioxidant activities of live bacterial strains were greater (P < 0.05) than of cell free extracts and dead bacterial strains. To examine the antioxidant capacity of L. plantarum JM113 in vivo, 192 1-d-old Arbor Acres chicks were randomly divided into 4 treatments groups consisting of 6 replicates with 8 birds per replicate. The dietary treatments were 1) control; 2) control diet supplemented with L. plantarum JM113 at 1 × 109 cfu/kg; 3) control diet contaminated with DON at 10 mg/kg; 4) control diet contaminated with DON at 10 mg/kg and supplemented with L. plantarum JM113 at 1 × 109 cfu/kg. Dietary supplementation with DON decreased (P < 0.05) superoxide dismutase activity in serum and increased (P < 0.05) malondialdehyde in the jejunal mucosa of broilers, compared to the control. However, supplementation with L. plantarum JM113 to both the DON-contaminated diet and the control diet, caused a significant reduction (P < 0.05) in malondialdehyde activity in the jejunal mucosa. A reduction (P < 0.05) in expression of nuclear factor erythroid 2-related factor 2 was observed in the jejunal mucosa of broilers fed dietary supplementation with DON, whereas the mRNA levels of Nrf2 and its corresponding downstream HO-1 gene increased (P < 0.05) with L. plantarum JM113 treatment. Addition of L. plantarum JM113 resulted in longer villi (P < 0.05), even in combination with DON compared to the DON group. L. plantarum JM113 treatment, especially in the DON plus L. plantarum JM113 group, up-regulated (P < 0.05) the expression of claudin-1 mRNA. In conclusion, the present study demonstrates that the L. plantarum JM113 strain has great antioxidant activity and supplementation in feed protected the integrity of the intestinal barrier in broilers challenged with DON, suggesting its use for alleviation of negative effects of DON in poultry.