Ischemic stroke is a multi-factorial cerebrovascular disease with high worldwide morbidity and mortality. In the past few years, multiple studies have revealed the underlying mechanism of ischemia/reperfusion injury, including calcium overload, amino acid toxicity, oxidative stress, and inflammation. Connexin 43 (Cx43), the predominant connexin protein in astrocytes, has been recently proven to display non-substitutable roles in the pathology of ischemic stroke development and progression through forming gap junctions and hemichannels. Under normal conditions, astrocytic Cx43 could be found in hemichannels or in the coupling with other hemichannels on astrocytes, neurons, or oligodendrocytes to form the neuro–glial syncytium, which is involved in metabolites exchange between communicated cells, thus maintaining the homeostasis of the CNS environment. In ischemic stroke, the phosphorylation of Cx43 might cause the degradation of gap junctions and the opening of hemichannels, contributing to the release of inflammatory mediators. However, the remaining gap junctions could facilitate the exchange of protective and harmful metabolites between healthy and injured cells, protecting the injured cells to some extent or damaging the healthy cells depending on the balance of the exchange of protective and harmful metabolites. In this study, we review the changes in astrocytic Cx43 expression and distribution as well as the influence of these changes on the function of astrocytes and other cells in the CNS, providing new insight into the pathology of ischemic stroke injury; we also discuss the potential of astrocytic Cx43 as a target for the treatment of ischemic stroke.
Chondroitinase ABC-type I (CSase ABC I), which can digest both chondroitin sulfate (CS) and dermatan sulfate (DS) in an endolytic manner, is an essential tool in structural and functional studies of CS/DS. Although a few CSase ABC I have been identified from bacteria, the substrate-degrading pattern and regulatory mechanisms of them have rarely been investigated. Herein, two CSase ABC I, IM3796 and IM1634, were identified from the intestinal metagenome of CS-fed mice. They show high sequence homology (query coverage: 88.00%, percent identity: 90.10%) except for an extra peptide (Met1-His109) at the N-terminus in IM1634, but their enzymatic properties are very different. IM3796 prefers to degrade 6-O-sulfated GalNAc residue-enriched CS into tetra- and disaccharides. In contrast, IM1634 exhibits nearly a thousand times more activity than IM3796 and can completely digest CS/DS with various sulfation patterns to produce disaccharides, unlike most CSase ABC I. Structure modeling showed that IM3796 did not contain an N-terminal domain composed of two β-sheets, which is found in IM1634 and other CSase ABC I. Furthermore, deletion of the N-terminal domain (Met1-His109) from IM1634 caused the enzymatic properties of the variant IM1634-T109 to be similar to those of IM3796, and conversely, grafting this domain to IM3796 increased the similarity of the variant IM3796-A109 to IM1634. In conclusion, the comparative study of the new CSase ABC I provides two unique tools for CS/DS-related studies and applications and, more importantly, reveals the critical role of the N-terminal domain in regulating the substrate binding and degradation of these enzymes.
Nuclear magnetic resonance (NMR) spectroscopy is one of the most utilized and informative analytical techniques for investigating glycosaminoglycan (GAG)-protein complexes. NMR methods that are commonly applied to GAG-protein systems include chemical shift perturbation, saturation transfer difference, and transferred nuclear Overhauser effect. Although these NMR methods have revealed valuable insight into the protein-GAG complexes, elucidating high-resolution structural and dynamic information of these often transient interactions remains challenging. In addition, preparation of structurally homogeneous and isotopically enriched GAG ligands for structural investigations continues to be laborious. As a result, understanding of the structure-activity relationship of GAGs is still primitive. To overcome these deficiencies, several innovative NMR techniques have been developed lately. Here, we review some of the commonly used techniques along with more novel methods such as waterLOGSY and experiments to examine structure and dynamic of lysine and arginine side chains to identify GAG-binding sites. We will also present the latest technology that is used to produce isotopically enriched as well as paramagnetically tagged GAG ligands. Recent results that were obtained from solid-state NMR of amyloid’s interaction with GAG are also presented together with a brief discussion on computer assisted modeling of GAG-protein complexes using sparse experimental data.
The MICA (MHC class I chain-related molecule A) is a ligand for the activating immunoreceptor NKG2D (natural killer group 2, member D). NKG2D recognizes MICA expressing at the cell surface for cell elimination. Although MICA is overexpressed in many kinds of tumours, tumour cells can cleverly escape immunosurveillance. One underlying mechanism for immunoescape is tumour-derived MICA shedding. In this study, we report that osteosarcoma-derived MICA results from proteolytic cleavage of MICA α3 ectodomain. sMICA (soluble MICA) might be released in the early stage of disease. A MMP9 (matrix metalloproteinase 9, gelatinase B)-specific inhibitor suppressed sMICA release, indicating that MMP9 is critically involved in the osteosarcoma-associated proteolytic release of sMICA, which facilitates tumour immune escape. Using a specific MMP inhibitor might represent a double-edged sword, where it can inhibit tumour invasion and restore antitumour immune response.
Aurora kinases (AURKs) family plays a vital role not only in cell division but also in tumorigenesis. However, there are still rare systematic analyses of the diverse expression patterns and prognostic value of the AURKs family in breast cancer (BC). Systematic bioinformatics analysis was conducted to explore the biological role, prognostic value, and immunologic function of AURKs family in BC.The expression, prognostic value, and clinical functions of AURKs family in BC were evaluated with several bioinformatics web portals: ONCOMINE Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter, cBioPortal, Metascape, GeneMANIA, and LinkedOmics; and the result was verified using human tissues.The expression of AURKA and AURKB were upregulated in BC in subgroup analyses based on tumor stage (all P < 0.05). BC patients with high AURKA and AURKB expression had a worse overall survival, relapse-free survival, and distant metastasis-free survival (all P < 0.05). Verification experiment revealed that AURKA and AURKB were upregulated in BC ( P < 0.05). AURKA and AURKB were specifically associated with several tumor-associated kinases (polo-like kinase 1 and cyclin-dependent kinase 1), miRNAs (miR-507 and miR-381), and E2F transcription factor 1. Moreover, AURKA and AURKB were correlated with immune cell infiltration. Functional enrichment analysis revealed that AURKA and AURKB were involved in the cell cycle signaling pathway, platinum drug resistance signaling pathway, ErbB signaling pathway, Hippo signaling pathway, and nucleotide-binding and oligomerization domain-like receptor signaling pathway.Aurora kinases AURKA and AURKB could be employed as novel prognostic biomarkers or promising therapeutic targets for BC.
In the present study, the complete mitochondrial genome of an early diverging fungus Blastocladiella sp. was assembled by the next-generation sequencing. The complete mitochondrial genome of Blastocladiella sp. is 33, 800 bp in length and consists of 11,620 (34.38%) adenine, 5,047 (14.93%) cytosine, 6,025 (17.83%) guanosine and 11,108 (32.86%) thymine. The genome contains 19 protein-coding genes, 24 tRNA genes and 2 rRNA genes. Phylogenetic analysis based on the combined mitochondrial gene set showed that Blastocladiella sp. has a close relationship with Allomyces macrogynus and Blastocladiella emersonii.