Abstract State-of-the-art deep learning models can converse and interact with humans by understanding their emotions, but the exponential increase in model parameters has triggered an unprecedented demand for fast and low-power computing. Here, we propose a microcomb-enabled integrated optical neural network (MIONN) to perform the intelligent task of human emotion recognition at the speed of light and with low power consumption. Large-scale tensor data can be independently encoded in dozens of frequency channels generated by the on-chip microcomb and computed in parallel when flowing through the microring weight bank. To validate the proposed MIONN, we fabricated proof-of-concept chips and a prototype photonic-electronic artificial intelligence (AI) computing engine with a potential throughput up to 51.2 TOPS (tera-operations per second). We developed automatic feedback control procedures to ensure the stability and 8 bits weighting precision of the MIONN. The MIONN has successfully recognized six basic human emotions, and achieved 78.5 % accuracy on the blind test set. The proposed MIONN provides a high-speed and energy-efficient neuromorphic computing hardware for deep learning models with emotional interaction capabilities.
N6-methyladenosine (m6A) plays a role in various diseases, but it has rarely been reported in acute lung injury (ALI). The fat mass and obesity-associated (FTO) protein can regulate mRNA metabolism by removing m6A residues. This study aimed to examine the role and mechanism of the m6A demethylase FTO in lipopolysaccharide (LPS)-induced ALI. Lung epithelial FTO knockout mice and FTO knockdown/overexpression A549 cell lines were constructed to evaluate the effects of FTO on ALI. Bioinformatics analysis and a series of in vivo and in vitro assays were used to examine the mechanism of FTO regulation. Rescue assays were conducted to examine whether the impact of FTO on ALI depended on the TXNIP/NLRP3 pathway. In LPS-induced ALI, RNA m6A modification levels were upregulated, and FTO expression was downregulated. In vivo, lung epithelial FTO knockout alleviated alveolar structure disorder, tissue oedema, and pulmonary inflammation and improved the survival of ALI mice. In vitro, FTO knockdown reduced A549 cell damage and death induced by LPS, while FTO overexpression exacerbated cell damage and death. Mechanistically, bioinformatics analysis revealed that TXNIP was a downstream target of FTO. FTO deficiency mitigated pyroptosis in LPS-induced ALI via the TXNIP/NLRP3 pathway. Rescue assays confirmed that the impact of FTO on the TXNIP/NLRP3 pathway was significantly reversed by the TXNIP inhibitor SRI-37330. Deficiency of FTO alleviates LPS-induced ALI via TXNIP/NLRP3 pathway-mediated alveolar epithelial cell pyroptosis, which might be a novel therapeutic strategy for combating ALI.
For surveillance video management in university laboratories, issues such as occlusion and low-resolution face capture often arise. Traditional face recognition algorithms are typically static and rely heavily on clear images, resulting in inaccurate recognition for low-resolution, small-sized faces. To address the challenges of occlusion and low-resolution person identification, this paper proposes a new face recognition framework by reconstructing Retinaface-Resnet and combining it with Quality-Adaptive Margin (adaface). Currently, although there are many target detection algorithms, they all require a large amount of data for training. However, datasets for low-resolution face detection are scarce, leading to poor detection performance of the models. This paper aims to solve Retinaface’s weak face recognition capability in low-resolution scenarios and its potential inaccuracies in face bounding box localization when faces are at extreme angles or partially occluded. To this end, Spatial Depth-wise Separable Convolutions are introduced. Retinaface-Resnet is designed for face detection and localization, while adaface is employed to address low-resolution face recognition by using feature norm approximation to estimate image quality and applying an adaptive margin function. Additionally, a multi-object tracking algorithm is used to solve the problem of moving occlusion. Experimental results demonstrate significant improvements, achieving an accuracy of 96.12% on the WiderFace dataset and a recognition accuracy of 84.36% in practical laboratory applications.
This paper presents an improved swarming algorithm that enhances low-illumination images. The algorithm combines a hybrid Harris Eagle algorithm with double gamma (IHHO-BIGA) and incomplete beta (IHHO-NBeta) functions. This paper integrates the concept of symmetry into the improvement steps of the image adaptive enhancement algorithm. The enhanced algorithm integrates chaotic mapping for population initialization, a nonlinear formula for prey energy calculation, spiral motion from the black widow algorithm for global search enhancement, a nonlinear inertia weight factor inspired by particle swarm optimization, and a modified Levy flight strategy to prevent premature convergence to local optima. This paper compares the algorithm’s performance with other swarm intelligence algorithms using commonly used test functions. The algorithm’s performance is compared against several emerging swarm intelligence algorithms using commonly used test functions, with results demonstrating its superior performance. The improved Harris Eagle algorithm is then applied for image adaptive enhancement, and its effectiveness is evaluated on five low-illumination images from the LOL dataset. The proposed method is compared to three common image enhancement techniques and the IHHO-BIGA and IHHO-NBeta methods. The experimental results reveal that the proposed approach achieves optimal visual perception and enhanced image evaluation metrics, outperforming the existing techniques. Notably, the standard deviation data of the first image show that the IHHO-NBeta method enhances the image by 8.26%, 120.91%, 126.85%, and 164.02% compared with IHHO-BIGA, the single-scale Retinex enhancement method, the homomorphic filtering method, and the limited contrast adaptive histogram equalization method, respectively. The processing time of the improved method is also better than the previous heuristic algorithm.
The photocatalytic production of H2O2 using the abundant water and air on earth is promising. Herein, the flower-like polyimide/ZnIn2S4 heterostructures were prepared by a simple two-step solvothermal method, where the tight interface formed between polyimide (PI) and ZnIn2S4 microspheres facilitated the separation and migration of photo-generated charges. Under air condition, the photocatalytic H2O2 production rate without any sacrificial agent is as high as 411.07 μmol g-1 h-1, which is 15.4 and 3.2 times higher than that of the pristine PI and ZnIn2S4 microspheres, respectively. Meanwhile, the PI/ZnIn2S4-2 has excellent reusability, and the H2O2 production of PI/ZnIn2S4-2 maintained 80% of its original value after five cycles. Moreover, the as-prepared samples underwent comprehensive characterization using various techniques, and the photocatalytic mechanism was also studied in depth. Active species capture experiments showed that e− and ·O2− played a primary role in this reaction system. This work provides a novel idea for photocatalytic H2O2 production in pure water and air.
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
Usher syndrome (USH) is the most prevalent cause of the human genetic deafness and blindness. USH type II (USH2) is the most common form of USH, and USH2A is the major pathogenic gene for USH2. For expanding the spectrum of USH2A mutations and further revealing the role of USH2A in USH2, we performed the USH2A gene variant screening in Chinese patients with USH2.Genomic DNA was extracted from peripheral blood of unrelated Chinese USH2 patients, we designed specific primers for amplifying the coding region (exons 2-72) of the USH2A gene. Sanger sequencing was used to study alleles. Silico prediction tools were used to predict the pathogenicity of the variants identified in these patients.Five heterozygous pathogenic variants were detected in four patients. Two patients were found to have two-mutations and two patients only have one. Two novel variants c.4217C > A (p.Ser1406X) and c.11780A > G (p.Asp3927Gly)) were predicted deleterious by computer prediction algorithms. In addition, three reported mutations (c.8559-2A > G, c.8232G > C and c.11389 + 3A > T) were also found in this study.We identified five heterozygous pathogenic variants in the USH2A gene in Chinese patients diagnosed with Usher syndrome type 2, two of which were not reported. It expands the spectrum of USH2A variants in USH.
Abstract A synthesis of benzothiazole derivatives through the reaction of 2-halo-N-allylanilines with K2S in DMF is developed. The trisulfur radical anion S3·–, which is generated in situ from K2S in DMF, initiates the reaction without transition-metal catalysis or other additives. In addition, two C–S bonds are formed and heteroaromatization of benzothiazole is triggered by radical cyclization and H-shift.
N6-methyladenosine (m6A) in eukaryotic RNA is an epigenetic modification that is critical for RNA metabolism, gene expression regulation, and the development of organisms. Aberrant expression of m6A components appears in a variety of human diseases. RNA m6A modification in Drosophila has proven to be involved in sex determination regulated by Sxl and may affect X chromosome expression through the MSL complex. The dosage-related effects under the condition of genomic imbalance (i.e. aneuploidy) are related to various epigenetic regulatory mechanisms. Here, we investigated the roles of RNA m6A modification in unbalanced genomes using aneuploid Drosophila. The results showed that the expression of m6A components changed significantly under genomic imbalance, and affected the abundance and genome-wide distribution of m6A, which may be related to the developmental abnormalities of aneuploids. The relationships between methylation status and classical dosage effect, dosage compensation, and inverse dosage effect were also studied. In addition, we demonstrated that RNA m6A methylation may affect dosage-dependent gene regulation through dosage-sensitive modifiers, alternative splicing, the MSL complex, and other processes. More interestingly, there seems to be a close relationship between MSL complex and RNA m6A modification. It is found that ectopically overexpressed MSL complex, especially the levels of H4K16Ac through MOF, could influence the expression levels of m6A modification and genomic imbalance may be involved in this interaction. We found that m6A could affect the levels of H4K16Ac through MOF, a component of the MSL complex, and that genomic imbalance may be involved in this interaction. Altogether, our work reveals the dynamic and regulatory role of RNA m6A modification in unbalanced genomes, and may shed new light on the mechanisms of aneuploidy-related developmental abnormalities and diseases.
Hydrogen peroxide (H2O2)-generating enzymes (HGEs) are potentially useful for tumor therapy, but the potential is limited by the challenge in regulating H2O2 production. Herein, we present site-specific in situ growth of a cationic polymer poly( N, N'-dimethylamino-2-ethyl methacrylate) (PDMA) from the N-terminus of glucose oxidase (GOX) to generate a site-specific and cationic GOX-PDMA conjugate with well-retained activity and enhanced stability to regulate H2O2 generation for cancer starvation and H2O2 therapy. Notably, the efficiency of endocytosis of the conjugate was 4-fold higher than that of free GOX. As a result, relative to free GOX, the conjugate showed 1.5-fold increased cytotoxicity, 2-fold enhanced tumor retention, and 5-fold increased tolerability after intratumoral injection. Importantly, a single intratumoral injection of the conjugate completely abolished colon tumors without detectable side effects, whereas free GOX was ineffective and systemically toxic. This chemistry may provide a new, simple, general, and efficient solution to regulate H2O2 production and thereby to dramatically improve the antitumor efficacy of HGEs while reducing side effects.