Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne’s disease, a chronic emaciating disease of ruminants that causes enormous economic losses to the bovine industry, globally. However, there are still remaining clues to be solved in the pathogenesis and diagnosis of the disease. Therefore, an in vivo murine experimental model was tried to understand responses in early stage of MAP infection by oral and intraperitoneal (IP) routes. In the MAP infection size, and weight of spleen and liver were increased in the IP group compared with oral groups. Severe histopathological changes were also observed in the spleen and liver of IP infected mice at 12 weeks post-infection (PI). Acid-fast bacterial burden in the organs was closely related to histopathological lesions. In the cytokine production from splenocytes of MAP-infected mice, higher amounts of in TNF-α, IL-10, and IFN-γ were produced at early stage of IP-infected mice while IL-17 production was different at time and infected groups. This phenomenon may indicate the immune shift from Th1 to Th17 through the time course of MAP infection. Systemic and local responses in the MAP-infection were analyzed by using transcriptomic analysis in the spleens and mesenteric lymph nodes (MLN). Based on the analysis of biological processes at 6 weeks PI in spleen and MLN in each infection group, canonical pathways were analyzed with ingenuity pathway analysis in the immune responses and metabolism especially lipid metabolism. Infected host cells with MAP increased in the production of proinflammatory cytokines and reduced the availability of glucose at early stage of infection ( p < 0.05). Also, host cells secreted cholesterol through cholesterol efflux to disturb energy source of MAP. These results reveal immunopathological and metabolic responses in the early stage of MAP infection through the development of a murine model.
Abstract Background : The aim of this study was to determine the feasibility and outcomes of early surgical ligation in preterm neonates with hemodynamically significant patent ductus arteriosus (HSPDA) and to investigate predictors for surgical treatment after unsuccessful medical management. Methods : Medical records from the neonatal intensive care unit of Hanyang University Seoul Hospital from January 2010 to December 2018 were retrospectively reviewed. 233 preterm neonates weighing less than 1,500 g with HSPDA were enrolled in our study. Of these preterm neonates, 134 underwent surgical ligation and were subdivided into the early ligation group (n = 49; within 10 days of age) and the late ligation group (n = 85; after 10 days of age). Results : The mean gestational age and birth weight were significantly lower in the patent ductus arteriosus (PDA) ligation group than in the Non-ligation group (p < 0.001). PDA ductal diameter > 2.0 mm (p < 0.001), low Apgar score at 5 minutes (p = 0.033), and chorioamnionitis (p = 0.037) were the predictors for receiving surgical treatment for PDA. Early ligation was significantly associated with a low incidence of culture-proven sepsis (p = 0.004), mechanical ventilator time > 4 weeks (p = 0.007), necrotizing enterocolitis stage (NEC) ≥ III (p = 0.022), and intraventricular hemorrhage (IVH) grade ≥ III (p = 0.035). Conclusions : Early surgical ligation minimizes the adverse effects of HSPDA in predicted preterm neonates who subsequently require surgical treatment for PDA. This result suggests that in preterm neonates weighing less than 1,500 g with HSPDA that is unresponsive to medical treatment, delayed ductal closure should be avoided to reduce severe NEC, severe IVH, culture-proven sepsis, and facilitate earlier endotracheal extubation.
Carbapenemase-producing Klebsiella pneumoniae (CPKP) is one of the most dangerous multidrug-resistant (MDR) pathogens in human health due to its widespread circulation in the nosocomial environment. CPKP carried by companion dogs, which are close to human beings, should be considered a common threat to public health. However, CPKP dissemination through companion animals is still under consideration of major diagnosis and surveillance systems.Two CPKP isolates which were genotyped to harbor bla NDM-5-encoding IncX3 plasmids, were subjected to the whole-genome study. Whole bacterial DNA was isolated, sequenced, and assembled with Oxford Nanopore long reads and corrected with short reads from the Illumina NovaSeq 6000 platform. The whole-genome structure and positions of antimicrobial resistance (AMR) genes were identified and visualized using CGView. Worldwide datasets were downloaded from the NCBI GenBank database for whole-genome comparative analysis. The whole-genome phylogenetic analysis was constructed using the identified whole-chromosome SNP sites from K. pneumoniae HS11286.As a result of the whole-genome identification, 4 heterogenous plasmids and a single chromosome were identified, each carrying various AMR genes. Multiple novel structures were identified from the AMR genes, coupled with mobile gene elements (MGE). The comparative whole-genome epidemiology revealed that ST378 K. pneumoniae is a novel type of CPKP, carrying a higher prevalence of AMR genes.The characterized whole-genome analysis of this study shows the emergence of a novel type of CPKP strain carrying various AMR genes with variated genomic structures. The presented data in this study show the necessity to develop additional surveillance programs and control measures for a novel type of CPKP strain.
Abstract TonEBP is a key transcriptional activator of M1 phenotype in macrophage, and its high expression is associated with many inflammatory diseases. During the progression of the inflammatory responses, the M1 to M2 phenotypic switch enables the dual role of macrophages in controlling the initiation and resolution of inflammation. Here we report that in human and mouse M1 macrophages TonEBP suppresses IL-10 expression and M2 phenotype. TonEBP knockdown promoted the transcription of the IL-10 gene by enhancing chromatin accessibility and Sp1 recruitment to its promoter. The enhanced expression of M2 genes by TonEBP knockdown was abrogated by antagonism of IL-10 by either neutralizing antibodies or siRNA-mediated silencing. In addition, pharmacological suppression of TonEBP leads to similar upregulation of IL-10 and M2 genes. Thus, TonEBP suppresses M2 phenotype via downregulation of the IL-10 in M1 macrophages.
Abstract Stem cell therapy is an emerging alternative therapeutic or disease-modifying strategy for amyotrophic lateral sclerosis (ALS). The aim of this open-label phase I clinical trial was to evaluate the safety of two repeated intrathecal injections of autologous bone marrow (BM)-derived mesenchymal stromal cells (MSCs) in ALS patients. Eight patients with definite or probable ALS were enrolled. After a 3-month lead-in period, autologous MSCs were isolated two times from the BM at an interval of 26 days and were then expanded in vitro for 28 days and suspended in autologous cerebrospinal fluid. Of the 8 patients, 7 received 2 intrathecal injections of autologous MSCs (1 × 106 cells per kg) 26 days apart. Clinical or laboratory measurements were recorded to evaluate the safety 12 months after the first MSC injection. The ALS Functional Rating Scale-Revised (ALSFRS-R), the Appel ALS score, and forced vital capacity were used to evaluate the patients' disease status. One patient died before treatment and was withdrawn from the study. With the exception of that patient, no serious adverse events were observed during the 12-month follow-up period. Most of the adverse events were self-limited or subsided after supportive treatment within 4 days. Decline in the ALSFRS-R score was not accelerated during the 6-month follow-up period. Two repeated intrathecal injections of autologous MSCs were safe and feasible throughout the duration of the 12-month follow-up period. Significance Stem cell therapy is an emerging alternative therapeutic or disease-modifying strategy for amyotrophic lateral sclerosis (ALS). To the authors' best knowledge, there are no clinical trials to evaluate the safety of repeated intrathecal injections of autologous bone marrow mesenchymal stromal cells in ALS. After the clinical trial (phase I/II) was conducted, the stem cell (HYNR-CS, NEURONATA-R) was included in the revision of the regulations on orphan drug designation (number 160; December 31, 2013) and approved as a New Drug Application (Department of Cell and Gene Therapy 233; July 30, 2014) by the Korean Food and Drug Administration. The phase II trial is expected to be reported later.
신증후군 환아에서 감염은 매우 중요한 사망원인이 된다. 독감 바이러스는 매번 겨울철마다 유행하며, 독감 바이러스의 치명률은 건강한 소아에서 호흡기세포융합바이러스의 사망률과 비슷하므로 독감에 의한 감염도 신증후군 환아들에게는 매우 치명적일 수 있다. 독감에 의한 사망률에는 폐렴으로 인한 사망이 많은 부분...
Ataxia is presented by various etiologies, including acquired, genetic and degenerative disorders. Although hereditary ataxia is suspected when typical symptom of ataxia with concurrent is identified, it is sometimes difficult to diagnose hereditary ataxia without genetic test. Clinically, next generation sequencing technology has been developed and widely used for diagnosis of hereditary disease. Hereby, we experienced cases of genetically confirmed <i>OPA1</i> mutation, which are presented with various clinical manifestations including ataxic gait and decreased visual acuity.
Abstract MicroRNAs (miRs) have important quantitative roles in tuning dynamical gene expression. Hes/Her transcription factor dynamics are sensitive to the increasing amount of miR-9 in the cell, transitioning from noisy high-level expression to oscillatory expression and then to downregulation. However, the mechanism by which miR-9 is quantitatively controlled is not known. In vertebrates, several distinct genomic loci produce the same mature miR-9, but the functional significance of multiple primary transcripts remains unknown. Here, we show that the amount of mature miR-9 increases during zebrafish neurogenesis in a sharp stepwise manner. We characterize the spatiotemporal profile of 7 distinct pri-mir-9s and show that they are sequentially expressed during hindbrain neurogenesis. Quantitative analysis of expression at the single-cell level, shows that expression of late-onset pri-mir-9-1 is added on, rather than replacing the expression of early onset pri-mir-9-4 and 9-5. Mutating the late-onset pri-mir-9-1 with CRISPR/Cas9 prevents the developmental increase of mature miR-9 and reduces late neuronal differentiation. Finally, we use mathematical modelling to explore possible benefits of a stepwise increase of miR-9 over a linear increase. We find that an adaptive network containing Her6 can be insensitive to a linear increase in miR-9 and show that such adaptation can be overcome by step-wise increases of miR-9. In conclusion, our work suggests that a sharp stepwise increase of mature miR-9 is contributed by sequential temporal activation of distinct loci. This may be a strategy to overcome adaptation and facilitate a transition to a new state of Her6 dynamics or level.