Genome-wide association studies have identified susceptibility loci for esophageal squamous cell carcinoma (ESCC). We conducted a meta-analysis of all single-nucleotide polymorphisms (SNPs) that showed nominally significant P-values in two previously published genome-wide scans that included a total of 2961 ESCC cases and 3400 controls. The meta-analysis revealed five SNPs at 2q33 with P< 5 × 10−8, and the strongest signal was rs13016963, with a combined odds ratio (95% confidence interval) of 1.29 (1.19–1.40) and P= 7.63 × 10−10. An imputation analysis of 4304 SNPs at 2q33 suggested a single association signal, and the strongest imputed SNP associations were similar to those from the genotyped SNPs. We conducted an ancestral recombination graph analysis with 53 SNPs to identify one or more haplotypes that harbor the variants directly responsible for the detected association signal. This showed that the five SNPs exist in a single haplotype along with 45 imputed SNPs in strong linkage disequilibrium, and the strongest candidate was rs10201587, one of the genotyped SNPs. Our meta-analysis found genome-wide significant SNPs at 2q33 that map to the CASP8/ALS2CR12/TRAK2 gene region. Variants in CASP8 have been extensively studied across a spectrum of cancers with mixed results. The locus we identified appears to be distinct from the widely studied rs3834129 and rs1045485 SNPs in CASP8. Future studies of esophageal and other cancers should focus on comprehensive sequencing of this 2q33 locus and functional analysis of rs13016963 and rs10201587 and other strongly correlated variants.
Non-diagnostic findings are common in transbronchial lung biopsy (TBLB) and endobronchial ultrasound-guided transbronchial lung biopsy (EBUS-TBLB). One of the challenges is to improve the detection of lung cancer using these techniques. To address this issue, we utilized an 850 K methylation chip to identify methylation sites that distinguish malignant from benign lung nodules. Our study found that a combination of HOXA7, SHOX2 and SCT methylation analysis has the best diagnostic yield in bronchial washing (sensitivity: 74.1%; AUC: 0.851) and brushing samples (sensitivity: 86.1%; AUC: 0.915). We developed a kit comprising these three genes and validated it in 329 unique bronchial washing samples, 397 unique brushing samples and 179 unique patients with both washing and brushing samples. The panel's accuracy in lung cancer diagnosis was 86.9%, 91.2% and 95% in bronchial washing, brushing and washing + brushing samples, respectively. When combined with cytology, rapid on-site evaluation (ROSE), and histology, the panel's sensitivity in lung cancer diagnosis was 90.8% and 95.8% in bronchial washing and brushing samples, respectively, and 100% in washing + brushing samples. Our findings suggest that quantitative analysis of the three-gene panel can improve the diagnosis of lung cancer using bronchoscopy.
Ischemia–reperfusion injury (IRI) is one of the major causes of acute kidney injury (AKI). tRNA derived fragments (tRFs/tiRNAs) are groups of small noncoding RNAs derived from tRNAs. To date, the role of tRFs/tiRNAs in renal IRI has not been reported. Herein, we aimed to investigate the involvement of tRFs/tiRNAs in the occurrence and development of ischemia–reperfusion-induced AKI. Moderate/severe renal IRI mouse models were established by bilateral renal pedicle clamping. The tRF/tiRNA profiles of healthy controls and moderate/severe IRI-stressed kidney tissues were sequenced by Illumina NextSeq 500. Candidate differentially expressed tiRNAs were further verified by RT-qPCR. Biological analysis was also performed. Overall, 152 tRFs/tiRNAs were differentially expressed in the moderate ischemic injury group compared with the normal control group (FC > 2, p < 0.05), of which 47 were upregulated and 105 were downregulated; in the severe ischemic injury group, 285 tRFs/tiRNAs were differentially expressed (FC > 2, p < 0.05), of which 157 were upregulated, and 128 were downregulated. RT-qPCR determination of eight abundantly expressed tiRNAs was consistent with the sequencing results. Gene Ontology analysis for target genes of the tRFs/tiRNAs showed that the most enriched cell components, molecular functions and biological processes were Golgi apparatus, cytoplasmic vesicles, protein binding, cellular protein localization and multicellular organism development. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these target genes were mainly involved in the natural killer cell mediated cytotoxicity pathway, citrate cycle, and regulation of actin cytoskeleton signaling pathway. Our results indicated that tRFs/tiRNAs were involved in renal IRI. These tRFs/tiRNAs may be effective partly via regulation of renal immunity, inflammation and metabolism processes. Candidate genes, including tiRNA-Gly-GCC-003, tiRNA-Lys-CTT-003, and tiRNA-His-GTG-002, might be potential biomarkers and therapeutic targets of ischemia–reperfusion injury-induced acute kidney injury.
Midbrain organoids provide an innovative cellular source for transplantation therapies of neurodegenerative diseases. Here, we present a protocol for midbrain organoid-derived cell transplantation into a Parkinson's disease mouse model. We describe steps for midbrain organoid generation, single-cell suspension preparation, and cell transplantation. This approach is valuable for studying the efficacy of midbrain organoids as a potential cellular source for restoring motor function. For complete details on the use and execution of this protocol, please refer to Fu et al.
Androgen-stimulated growth of the molecular apocrine breast cancer subtype is mediated by an androgen receptor (AR)-regulated transcriptional program. However, the molecular details of this AR-centered regulatory network and the roles of other transcription factors that cooperate with AR in the network remain elusive. Here we report a positive feed-forward loop that enhances breast cancer growth involving AR, AR coregulators, and downstream target genes. In the absence of an androgen signal, TCF7L2 interacts with FOXA1 at AR-binding sites and represses the basal expression of AR target genes, including MYC. Direct AR regulation of MYC cooperates with AR-mediated activation of HER2/HER3 signaling. HER2/HER3 signaling increases the transcriptional activity of MYC through phosphorylation of MAD1, leading to increased levels of MYC/MAX heterodimers. MYC in turn reinforces the transcriptional activation of androgen-responsive genes. These results reveal a novel regulatory network in molecular apocrine breast cancers regulated by androgen and AR in which MYC plays a central role as both a key target and a cooperating transcription factor to drive oncogenic growth.