Recommendation models mainly deal with categorical variables, such as user/item ID and attributes. Besides the high-cardinality issue, the interactions among such categorical variables are usually long-tailed, with the head made up of highly frequent values and a long tail of rare ones. This phenomenon results in the data sparsity issue, making it essential to regularize the models to ensure generalization. The common practice is to employ grid search to manually tune regularization hyperparameters based on the validation data. However, it requires non-trivial efforts and large computation resources to search the whole candidate space; even so, it may not lead to the optimal choice, for which different parameters should have different regularization strengths. In this paper, we propose a hyperparameter optimization method, LambdaOpt, which automatically and adaptively enforces regularization during training. Specifically, it updates the regularization coefficients based on the performance of validation data. With LambdaOpt, the notorious tuning of regularization hyperparameters can be avoided; more importantly, it allows fine-grained regularization (i.e. each parameter can have an individualized regularization coefficient), leading to better generalized models. We show how to employ LambdaOpt on matrix factorization, a classical model that is representative of a large family of recommender models. Extensive experiments on two public benchmarks demonstrate the superiority of our method in boosting the performance of top-K recommendation.
Learning network embeddings has attracted growing attention in recent years. However, most of the existing methods focus on homogeneous networks, which cannot capture the important type information in heterogeneous networks. To address this problem, in this paper, we propose TransN, a novel multi-view network embedding framework for heterogeneous networks. Compared with the existing methods, TransN is an unsupervised framework which does not require node labels or user-specified meta-paths as inputs. In addition, TransN is capable of handling more general types of heterogeneous networks than the previous works. Specifically, in our framework TransN, we propose a novel algorithm to capture the proximity information inside each single view. Moreover, to transfer the learned information across views, we propose an algorithm to translate the node embeddings between different views based on the dual-learning mechanism, which can both capture the complex relations between node embeddings in different views, and preserve the proximity information inside each view during the translation. We conduct extensive experiments on real-world heterogeneous networks, whose results demonstrate that the node embeddings generated by TransN outperform those of competitors in various network mining tasks.
Almost all the knowledge empowered applications rely upon accurate knowledge, which has to be either collected manually with high cost, or extracted automatically with unignorable errors. In this paper, we study 20 Questions, an online interactive game where each question-response pair corresponds to a fact of the target entity, to acquire highly accurate knowledge effectively with nearly zero labor cost. Knowledge acquisition via 20 Questions predominantly presents two challenges to the intelligent agent playing games with human players. The first one is to seek enough information and identify the target entity with as few questions as possible, while the second one is to leverage the remaining questioning opportunities to acquire valuable knowledge effectively, both of which count on good questioning strategies. To address these challenges, we propose the Learning-to-Ask (LA) framework, within which the agent learns smart questioning strategies for information seeking and knowledge acquisition by means of deep reinforcement learning and generalized matrix factorization respectively. In addition, a Bayesian approach to represent knowledge is adopted to ensure robustness to noisy user responses. Simulating experiments on real data show that LA is able to equip the agent with effective questioning strategies, which result in high winning rates and rapid knowledge acquisition. Moreover, the questioning strategies for information seeking and knowledge acquisition boost the performance of each other, allowing the agent to start with a relatively small knowledge set and quickly improve its knowledge base in the absence of constant human supervision.
Almost all the knowledge empowered applications rely upon accurate knowledge, which has to be either collected manually with high cost, or extracted automatically with unignorable errors. In this paper, we study 20 Questions, an online interactive game where each question-response pair corresponds to a fact of the target entity, to acquire highly accurate knowledge effectively with nearly zero labor cost. Knowledge acquisition via 20 Questions predominantly presents two challenges to the intelligent agent playing games with human players. The first one is to seek enough information and identify the target entity with as few questions as possible, while the second one is to leverage the remaining questioning opportunities to acquire valuable knowledge effectively, both of which count on good questioning strategies. To address these challenges, we propose the Learning-to-Ask (LA) framework, within which the agent learns smart questioning strategies for information seeking and knowledge acquisition by means of deep reinforcement learning and generalized matrix factorization respectively. In addition, a Bayesian approach to represent knowledge is adopted to ensure robustness to noisy user responses. Simulating experiments on real data show that LA is able to equip the agent with effective questioning strategies, which result in high winning rates and rapid knowledge acquisition. Moreover, the questioning strategies for information seeking and knowledge acquisition boost the performance of each other, allowing the agent to start with a relatively small knowledge set and quickly improve its knowledge base in the absence of constant human supervision.
In this paper, we aim to provide a systematic study of the relationship between Chernoff information and topological, as well as algebraic properties of the corresponding Gaussian tree graphs for the underlying graphical testing problems. We first show the relationship between Chernoff information and generalized eigenvalues of the associated covariance matrices. It is then proved that Chernoff information between two Gaussian trees sharing certain local subtree structures can be transformed into that of two smaller trees. Under our proposed grafting operations, bottleneck Gaussian trees, namely, Gaussian trees connected by one such operation, can thus be simplified into two 3-node Gaussian trees, whose topologies and edge weights are subject to the specifics of the operation. Thereafter, we provide a thorough study about how Chernoff information changes when small differences are accumulated into bigger ones via concatenated grafting operations. It is shown that the two Gaussian trees connected by more than one grafting operation may not have bigger Chernoff information than that of one grafting operation unless these grafting operations are separate and independent. At the end, we propose an optimal linear dimensional reduction method related to generalized eigenvalues.
In this paper, our objective is to find out the determining factors of Chernoff information in distinguishing a set of Gaussian trees. In this set, each tree can be attained via a subtree removal and grafting operation from another tree. This is equivalent to asking for the Chernoff information between the most-likely confused, i.e. "bottleneck", Gaussian trees, as shown to be the case in ML estimated Gaussian tree graphs lately. We prove that the Chernoff information between two Gaussian trees related through a subtree removal and grafting operation is the same as that between two three-node Gaussian trees, whose topologies and edge weights are subject to the underlying graph operation. In addition, such Chernoff information is shown to be determined only by the maximum generalized eigenvalue of the two Gaussian covariance matrices. The Chernoff information of scalar Gaussian variables as a result of linear transformation (LT) of the original Gaussian vectors is also uniquely determined by the same maximum generalized eigenvalue. What is even more interesting is that after incorporating the cost of measurements into a normalized Chernoff information, Gaussian variables from LT have larger normalized Chernoff information than the one based on the original Gaussian vectors, as shown in our proved bounds.
As a metric of fault-tolerance, k-connectivity fails to consider the energy-efficiency of the remaining network after node failures. Fault-tolerant spanner considers both energy-efficiency and fault-tolerance problems of the network. A fault-tolerant spanner has a fault-tolerant stretch factor bounded by a predetermined real number, which guarantees that the remaining network is high energy-efficient after node failures. In this paper, we use fault-tolerant spanner to measure the network fault-tolerance and propose an approach to transform a spanner into a fault-tolerant spanner. Based on the approach, we propose a k-fault-tolerant t-spanner (k-FTtS) topology control algorithm. k-FTtS is localized and the topology under it has following properties: 1) it has (k+1)-connectivity; 2) it has a bounded stretch factor after the failure of up to k nodes. Simulation results show that k-FTtS is an effective algorithm to construct fault-tolerant spanners in wireless networks and also performs well in logical degree, physical degree and transmission radius.