Abstract In stock farming, the body size parameters and weight of yaks can reasonably reflect the growth and development characteristics, production performance and genetic characteristics of yaks. However, it is difficult for herders to measure the body size and weight of yaks by traditional manual methods. Fortunately, with the development of edge computing, herders can use mobile devices to estimate the yak’s body size and weight. The purpose of this paper is to provide a machine vision-based yak weight estimation method for the edge equipment and establish a yak estimation comprehensive display system based on the user’s use of the edge equipment in order to maximize the convenience of herdsmen’s work. In our method, a set of yak image foreground extraction and measurement point recognition algorithm suitable for edge equipment were developed to obtain yak’s measurement point recognition image, and the ratio between body sizes was transmitted to the cloud server. Then, the body size and weight of yaks were estimated using the data mining method, and the body size estimation data were constantly displayed in the yak estimation comprehensive display system. 25 yaks in different age groups were randomly selected from the herd to perform experiments. The experimental results show that the foreground extraction method can obtain segmentation image with good boundary, and the yak measurement point recognition algorithm has good accuracy and stability. The average error between the estimated values and the actual measured values of body height, oblique length, chest depth, cross height and body weight is 1.95%, 3.11%, 4.91%, 3.35% and 7.79%, respectively. Compared with the traditional manual measurement method, the use of mobile end to estimate the body size and weight of yaks can improve the measurement efficiency, facilitate the herdsmen to breed yaks, reduce the stimulation of manual measurement on yaks, and lay a solid foundation for the fine breeding of yaks in Sanjiangyuan region.
Abstract In stock farming, the body size parameters and weight of yaks can reasonably reflect the growth and development characteristics, production performance and genetic characteristics of yaks. However, it is difficult for herders to measure the body size and weight of yaks by traditional manual methods. Fortunately, with the development of edge computing, herders can use mobile devices to estimate the yak’s body size and weight. The purpose of this paper is to provide a machine vision-based yak weight estimation method for the edge equipment and establish a yak estimation comprehensive display system based on the user’s use of the edge equipment in order to maximize the convenience of herdsmen’s work. In our method, a set of yak image foreground extraction and measurement point recognition algorithm suitable for edge equipment were developed to obtain yak’s measurement point recognition image, and the ratio between body sizes was transmitted to the cloud server. Then, the body size and weight of yaks were estimated using the data mining method, and the body size estimation data were constantly displayed in the yak estimation comprehensive display system. Twenty-five yaks in different age groups were randomly selected from the herd to perform experiments. The experimental results show that the foreground extraction method can obtain segmentation image with good boundary, and the yak measurement point recognition algorithm has good accuracy and stability. The average error between the estimated values and the actual measured values of body height, oblique length, chest depth, cross height and body weight is 1.95%, 3.11%, 4.91%, 3.35% and 7.79%, respectively. Compared with the traditional manual measurement method, the use of mobile end to estimate the body size and weight of yaks can improve the measurement efficiency, facilitate the herdsmen to breed yaks, reduce the stimulation of manual measurement on yaks and lay a solid foundation for the fine breeding of yaks in Sanjiangyuan region.
The normal mode helical antenna (NMHA) is widely used on RFID applications because it fits well with the requirements of smaller physical size and high inductive impedance. In this paper, a power transmission coefficient method of mapping a modified impedance function onto the conventional Smith chart is applied to conjugate matching design between NMHA and chips. Moreover, the effect of various geometrical parameters of NMHA on resonant frequency and input impedance is investigated. Some significant characteristics of NMHA in the Smith chart are obtained by varying each parameter. It could provide an effective guidance to tune the antenna to desirable complex impedance in the Smith chart. Finally, impedance matching design of a specific NMHA is conducted according to the previously mentioned method.
Although many systems based on global or local descriptors have shown promising results for logo recognition, they have handled all logos with the same structure and not considered their diversities. Therefore, with the logo scale increasing, the general way cannot recognize each logo perfectly. To overcome this limitation, we propose a novel strategy to match query and each logo individually using these features. First, a new conception named logo density is introduced as important semantic information for logos. Second, matching density is given according to the logo density and by utilizing it in logistic function an individualized matching strategy is developed to obtain accurate similarity for query and a logo. Finally, we present a fast recognition algorithm based upon bag-of-words model to realize scalable logo recognition. Our method is evaluated on two challenging datasets (our 10,000-class logo dataset and FlickrLogos-27). Experiments demonstrate its superior performance comparing to previous methods.
Accessible frontier is an important factor for mobile robot autonomous exploration. This paper presents a fast and robust frontier line segment extracting method based on fuzzy c-means clustering algorithm for robot exploration. Firstly, the proposed method divides robot's local occupancy map into sub-regions with same size. In the next step, this paper analyzes the characteristic of robot exploration frontier with occupancy grid map, and the optimal number of FCM cluster center in each sub-region is defined. Consequently, line segments corresponding to exploration frontiers based on fuzzy c-mean algorithm are calculated in sub-region level to alleviate the extensive computation. Following those steps, line segments merging, line endpoints extending and line excluding are conducted to get more accurate frontier segment parameters in global level. In the end, the effectiveness of proposed method is verified by experiments results in lab environment.
Recently, text-to-3D generation has attracted significant attention, resulting in notable performance enhancements. Previous methods utilize end-to-end 3D generation models to initialize 3D Gaussians, multi-view diffusion models to enforce multi-view consistency, and text-to-image diffusion models to refine details with score distillation algorithms. However, these methods exhibit two limitations. Firstly, they encounter conflicts in generation directions since different models aim to produce diverse 3D assets. Secondly, the issue of over-saturation in score distillation has not been thoroughly investigated and solved. To address these limitations, we propose PlacidDreamer, a text-to-3D framework that harmonizes initialization, multi-view generation, and text-conditioned generation with a single multi-view diffusion model, while simultaneously employing a novel score distillation algorithm to achieve balanced saturation. To unify the generation direction, we introduce the Latent-Plane module, a training-friendly plug-in extension that enables multi-view diffusion models to provide fast geometry reconstruction for initialization and enhanced multi-view images to personalize the text-to-image diffusion model. To address the over-saturation problem, we propose to view score distillation as a multi-objective optimization problem and introduce the Balanced Score Distillation algorithm, which offers a Pareto Optimal solution that achieves both rich details and balanced saturation. Extensive experiments validate the outstanding capabilities of our PlacidDreamer. The code is available at \url{https://github.com/HansenHuang0823/PlacidDreamer}.
Detecting small targets in drone imagery is challenging due to low resolution, complex backgrounds, and dynamic scenes. We propose EDNet, a novel edge-target detection framework built on an enhanced YOLOv10 architecture, optimized for real-time applications without post-processing. EDNet incorporates an XSmall detection head and a Cross Concat strategy to improve feature fusion and multi-scale context awareness for detecting tiny targets in diverse environments. Our unique C2f-FCA block employs Faster Context Attention to enhance feature extraction while reducing computational complexity. The WIoU loss function is employed for improved bounding box regression. With seven model sizes ranging from Tiny to XL, EDNet accommodates various deployment environments, enabling local real-time inference and ensuring data privacy. Notably, EDNet achieves up to a 5.6% gain in mAP@50 with significantly fewer parameters. On an iPhone 12, EDNet variants operate at speeds ranging from 16 to 55 FPS, providing a scalable and efficient solution for edge-based object detection in challenging drone imagery. The source code and pre-trained models are available at: https://github.com/zsniko/EDNet.