Organic electrode materials have gained attention for their tunable structures and sustainability, but their low electronic conductivity requires the use of large amounts of carbon additives (30 wt %) and low mass loadings (<2 mg cm-2) in electrodes. Here, we synthesize dibenzo[b,i]phenazine-5,7,12,14-tetrone (DPT) as a cathode active material for an aqueous Zn battery and find that Zn2+ storage dominates the cathode reaction. This battery demonstrates high capacity (367 mAh g-1), high-rate performance, and superlong life (12000 cycles). Remarkably, despite DPT's insulative nature, even with a high mass loading (10 mg cm-2) and only 10 wt % carbon additives, the DPT-based cathode exhibits promising performance due to trace dissolved discharge product (DPTx-). During discharge, the DPT is reduced to trace amounts of dissolved DPTx- at the cathode surface, which in turn reduces the remaining solid DPT as a redox mediator. Furthermore, dissolution-redeposition results in the reduction of DPT size and the formation of pores, further activating the electrode.
Using ab initio molecular dynamics (AIMD) simulations that facilitate the treatment of rare events, we probe the active site participation in the rate-determining hydrogen transfer step in the catalytic oxidation of linoleic acid by soybean lipoxygenase-1 (SLO-1). The role of two different active site components is probed. (a) On the hydrogen atom acceptor side of the active site, the hydrogen bonding propensity between the acceptor side hydroxyl group, which is bound to the iron cofactor, and the backbone carboxyl group of isoleucine (residue number 839) is studied toward its role in promoting the hydrogen transfer event. Primary and secondary (H/D) isotope effects are also probed and a definite correlation with subtle secondary H/D isotope effects is found. With increasing average nuclear kinetic energy, the increase in transfer probability is enhanced due to the presence of the hydrogen bond between the backbone carbonyl of I839 and the acceptor oxygen. Further increase in average nuclear kinetic energy reduces the strength of this secondary hydrogen bond which leads to a deterioration in hydrogen transfer rates and finally embrances an Arrhenius-like behavior. (b) On the hydrogen atom donor side, the coupling between vibrational modes predominantly localized on the donor-side linoleic acid group and the reactive mode is probed. There appears to be a qualitative difference in the coupling between modes that belong to linoleic acid and the hydrogen transfer mode, for hydrogen and deuterium transfer. For example, the donor side secondary hydrogen atom is much more labile (by nearly a factor of 5) during deuterium transfer as compared to the case for hydrogen transfer. This appears to indicate a greater coupling between the modes belonging to the linoleic acid scaffold and the deuterium transfer mode and also provides a new rationalization for the abnormal (nonclassical) secondary isotope effect results obtained by Knapp, Rickert, and Klinman in J. Am. Chem. Soc. , 2002 , 124 , 3865 . To substantiate our findings noted in point a above, we have suggested an I839 → A839 or I839 → V839 mutation. This will modify the bulkiness of hydrogen the bonding residue, allowing greater flexibility in the secondary hydrogen bond formation highlighted above and adversely affecting the reaction rate.
Based on the monotonicity of elementary functions, this paper constructed a new kind of buffer operator with parameter. The new weakening buffer operator improved the prediction accuracy; and through an example, the effect is good.
Increasing evidences suggested the association between leptin and cognitive functions. Estrogen is an important factor that regulates the production and metabolism of leptin. However, little is known about the relationship between leptin and estrogen in mild cognitive impairment (MCI). Plasma levels of leptin, total estradiol, and β -amyloid protein (A β ) were measured in a total of 23 female amnestic MCI (aMCI) patients and 19 female cognitively normal controls. This study showed that female aMCI patients had lower plasma levels of leptin and higher levels of estradiol compared to female normal controls. Leptin and estradiol levels were not correlated with cognitive performances or plasma A β levels in either aMCI patients or normal controls. There was a significant negative correlation between leptin and estrogen in female aMCI patients (r=-0.633,p=0.002) but not in female normal controls. The potential mechanisms of this disease-stage-specific association between leptin and estrogen need further investigations.
Diffusion magnetic resonance imaging may allow for microscopic characterization of white matter degeneration in early stages of Alzheimer's disease.Multishell Diffusion magnetic resonance imaging data were acquired from 100 participants (40 cognitively normal, 38 with subjective cognitive decline, and 22 with mild cognitive impairment [MCI]). White matter microscopic degeneration in 27 major tracts of interest was assessed using diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging, and q-space imaging.Lower DTI fractional anisotropy and higher radial diffusivity were observed in the cingulum, thalamic radiation, and forceps major of participants with MCI. These tracts of interest also had the highest predictive power to discriminate groups. Diffusion metrics were associated with cognitive performance, particularly Rey Auditory Verbal Learning Test immediate recall, with the highest association observed in participants with MCI.While DTI was the most sensitive, neurite orientation dispersion and density imaging and q-space imaging complementarily characterized reduced axonal density accompanied with dispersed and less restricted white matter microstructures.
As deep learning techniques and algorithms become more and more common in scientific workflows, HPC centers are grappling with how best to provide GPU resources and support deep learning workloads. One novel method of deployment is to virtualize GPU resources allowing for multiple VM instances to have logically distinct virtual GPUs (vGPUs) on a shared physical GPU. However, there are many operational and performance implications to consider before deploying a vGPU service in an HPC center. In this paper, we investigate the performance characteristics of vGPUs for both traditional HPC workloads and for deep learning training and inference workloads. Using NVIDIA's vDWS virtualization software, we perform a series of HPC and deep learning benchmarks on both non-virtualized (bare metal) and vGPUs of various sizes and configurations. We report on several of the challenges we discovered in deploying and operating a variety of virtualized instance sizes and configurations. We find that the overhead of virtualization on HPC workloads is generally <; 10%, and can vary considerably for deep learning, depending on the task.
We sought to compare the therapeutic efficacy between two vascular-disrupting agents, combretastatin A4 phosphate (CA4P) and ZD6126, at a clinically relevant dose on tumor models with magnetic resonance imaging (MRI). Thirty rats with liver rhabdomyosarcoma were randomized into CA4P (10 mg/kg), ZD6126 (10 mg/kg), and control group (n=10 for each group). Multiparametric MRI biomarkers including tumor volume, enhancement ratio, necrosis ratio, apparent diffusion coefficient (ADC), and K (volume transfer constant) derived from T2-weighted, T1-weighted, contrast-enhanced T1-weighted, and diffusion-weighted imaging, and dynamic contrast-enhanced MRI were compared at pretreatment, 1 h, 6 h, 24 h, 48 h, and 120 h posttreatment; they were validated using ex-vivo techniques. Relative to rapidly growing tumors without necrosis in control rats, tumors grew slower in the CA4P group compared with the ZD6126 group with a higher necrosis ratio at 120 h (P<0.05), as proven by histopathology. In the CA4P group, K decreased from 1 h until 6 h, and partially recovered at 120 h. In the ZD6126 group, the reduced K at 1 h began to rebound from 6 h and exceeded the baseline value at 120 h (P<0.05), parallel to evolving enhancement ratios (P<0.05). ADC revealed more necrotic tumors with CA4P versus ZD6126 at 120 h (P<0.05). The different tumor responses were confirmed by ex-vivo microangiography and histopathology. CA4P was more effective than ZD6126 in impairing blood supply, inducing necrosis, and delaying growth in rat liver tumors at a clinically relevant dose. A single dose of vascular-disrupting agent was insufficient to destroy the tumor. The multiparametric MRI biomarkers enabled in-vivo noninvasive comparison of therapeutic efficacy between CA4P and ZD6126.
The tone captures how the leaders of listed company confidence to the performance and tone changes correlate with revisions of future outlook. Current predicting stock market behaviour is using numerous quantitative financial factors. Recent publications have demonstrated that some implied sentiment information such as tone changes in annual reports can be successfully used to predict the stock price in the U.S market. However, the investors' reflection to the tone changes in annual reports in Asia market, especially in Asian financial center Hong Kong, is still unknown. In this paper, the chairman's statement tone changes in annual reports from the Hong Kong market have been studied in the first time. This study evaluates three different tone changes methods and combing with financial indicators to predict the stock price. The experimental results prove that the tone changes of annual reports can predict the stock price in the long trend, which implies the low market efficiency in Hong Kong. Moreover, some experiments have been investigated whether the financial crisis can be predicted from the chairman's tone changes.
Hydrocarbon (HC) emissions from direct injection gasoline (DIG) engines are significantly higher than those from comparable port fuel injected engines, especially when “late” direct injection (injection during the compression stroke) is used to produce a fuel economy benefit via unthrottled lean operation. The sources of engine-out hydrocarbon emissions for late direct injection are bulk flame quench, low temperatures for post-combustion oxidation, and fuel impingement on in-cylinder walls. An experimental technique has been developed that isolates the wall impingement source from the other sources of HC emissions from DIG engines. A series of steady-state and transient experiments is reported for which the HC emissions due to operation with a premixed charge using a gaseous fuel are compared to those when a small amount of liquid fuel is injected onto an in-cylinder surface and the gaseous fuel flow rate is decreased correspondingly. The steady-state experiments show that wetting any in-cylinder surface dramatically increases HC emissions compared to homogeneous charge operation with a gaseous fuel. The results of the transient fuel injection interrupt tests indicate that liquid-phase gasoline can survive within the cylinder of a fully warmed-up firing engine and that liquid fuel vaporization is slower than current computational models predict. This work supports the argument that HC emissions from DIG engines can be decreased by reducing the amount of liquid fuel that impinges on the cylinder liner and piston, and by improving the vaporization rate of the fuel that is deposited on these surfaces.