The authors of this Full Paper wish to correct Figure S8 in which the parts a,b,e,f have been exchanged. The corrected Figure S8 is given below. During re-evaluation of the data presented in this article, it was noticed that the parts (e) (control) and (f) (laser control) were duplicated in the original Figure S8, with both images belonging to the control group. Part (f) has been replaced by the correct image. For parts (a) (PPy NSs) and (b) (PPy NSs+laser), images corresponding to the PPy-DOX group and PPy-DOX+laser group, respectively, were originally presented. Parts (a) and (b) shown below are the correct images for the PPy NSs group and PPy NSs+laser group, respectively. The authors apologize for these errors and confirm that the conclusions are unchanged. Figure S8. (H&E) staining of tumor slices from different groups. PPy NSs (a). PPy NSs+laser (b). PPy NSs-DOX (c). PPy NSs-DOX+laser (d). Control (e). Laser control (f).
Chemotherapy is one of the most common and effective ways for the clinical treatment of tumors, but tumor cells develop resistance toward drugs after a long period of chemotherapy. Interestingly, the gene expression of resistant cells usually generates increased sialic acid and raises the negative potential of the cell membranes, which is potentially useful to design novel theranostic models. In this work, we demonstrate multidrug resistant tumors-aimed theranostics by the virtue of the strong electrostatic attraction between resistant cells and nanomaterials. Human oral epithelial carcinoma vincristine-resistant tumor (KBV) and human oral epithelial carcinoma tumor (KB) were employed and compared as the tumor models. Polyethylene glycol-coated and Cu(ii) and vincristine codoped polyaniline nanoshuttles (VCR-PEG-CuPani NSs), which possessed multifunctions, positive charges, and blood circulation half-life of 6.26 ± 0.16 h, were employed as the nanomaterials for performing the tumor theranostics. Because of the stronger electrostatic attraction with KBV than that with KB, VCR-PEG-CuPani NSs showed higher enrichment of 8.05 ± 0.39% ID g-1 for KBV and a lower value of 6.02 ± 0.22% ID g-1 for KB. The higher accumulation of VCR-PEG-CuPani NSs in KBV tumors further improved the efficacy of tumor theranostics, such as those using magnetic resonance imaging, chemotherapy, and photothermal therapy.
Photothermal treatment, a new approach for inactivation of bacteria and pathogens that does not depend on traditional therapeutic approaches, has recently received much attention. In this study, a new type of nanoplatform (PDA@Fe3O4 + PES) was fabricated by using polydopamine (PDA, a photothermal conversion agent) to encapsulate Fe3O4 (a magnetic nanoparticle) and support 2-phenylethynesulfonamide (PES, an inhibitor of heat shock protein 70 (HSP70)). Upon near-infrared light irradiation, the increased temperature weakens π-π and hydrogen bonding interactions, and PES is released from the PDA@Fe3O4 + PES. The released PES inhibits the function of HSP70, reducing bacterial tolerance to photothermal therapy and improving the therapeutic effect against infectious bacterial pathogens. After treatment, PDA@Fe3O4 + PES can be recovered using the magnetic property of the Fe3O4 cores. Consequently, PDA@Fe3O4 + PES possesses the potential to be a recyclable photothermal agent for enhanced photothermal bacterial inactivation without causing secondary pollution.
Reactive oxygen species (ROS) play crucial roles in cell signaling and redox homeostasis and are strongly related to metabolic activities. The increase of the ROS concentration in organisms can result in several diseases, such as cardiovascular diseases and cancer. The concentration of ROS in biologically relevant conditions is typically as low as around tens of micromolars to 100 μM H2O2, which makes it necessary to develop ultrasensitive ROS-responsive systems. A general approach is reported here to fabricate an ultrasensitive ROS-responsive system via coassembly between tellurium-containing molecules and phospholipids, combining the ROS-responsiveness of tellurium and the biocompatibility of phospholipids. By using dynamic light scattering, transmission electron microscopy, scanning electron microscopy, and NMR spectra, coassembly behaviors and the responsiveness of the coassemblies have been investigated. These coassemblies can respond to 100 μM H2O2, which is a biologically relevant ROS concentration, and demonstrate reversible redox properties.