Abstract The assembly of ultrasmall metal nanoclusters (NCs) is of interest to both basic and applied research as it facilitates the determination of cluster structures and the customization of cluster physicochemical properties. Here we present a facile and general approach to assemble noble metal NCs by selectively inducing electrostatic interactions between negatively-charged metal NCs and divalent cations. The charged metal NCs, which have well-defined sizes, charges and structures; and behave similarly to multivalent anions, can be considered as nanoions. These nanoions exhibit step-like assembly behavior when interacting with the counter cations – assembly only occurs when the solubility product (K sp ) between the carboxylate ions on the NC surface and the divalent cations is exceeded. The assembly here is distinctively different from the random aggregation of colloidal particles by counter ions. The nanoions would assemble into fractal-like monodisperse spherical particles with a high order of regularity that mimic the assembly of ionic crystals.
It remains unclear that how tumor immune micro-environment will change following neoadjuvant chemotherapy (NACT) in locally advanced gastric cancer (LAGC). In this study, we aimed to characterize the changes in tumor-infiltrating immune cells and checkpoint molecules following NACT and investigate the prognostic value of these changes in LAGC. Paired tumor samples (pre-NACT and post-NACT) of 60 patients were retrospectively identified and analyzed by multiplex immunohistochemistry with a panel including CD4, CD8, FOXP3, PD-1, PD-L1, and TIM3. Following NACT, the overall median expression levels of CD4, CD8, PD1, PD-L1 and TIM3 were significantly increased (P = 0.008 for PD-L1 and P < 0.001 for all the other markers), while the median FOXP3 expression level remained stable (P = 0.120). Individually, the majority of patients presented increased expression of the markers, while 8.5%, 11.9%, 16.9%, 25.4%, 22.0% and 42.2% of patients had decreased expression of CD4, CD8, PD-1, PD-L1, TIM3 and FOXP3, respectively. Changes in expression between baseline and post-NACT of TIM3, PD-1, and PD-L1 showed strongly positive pairwise correlations with each other (P < 0.001). Multivariate analysis demonstrated that high upregulation levels of CD8 (HR = 0.73, P = 0.028), PD-1 (HR = 0.76, P = 0.027), and PD-L1 (HR = 0.67, P = 0.038) following NACT were beneficial prognostic factors of OS. NACT increase the expression of multiple checkpoint molecules and infiltration of CD4+, CD8+ immune cells in LAGC with the levels of changes in checkpoint molecules positively related with each other. This may raise the possibility of applying immunotherapy with chemotherapy or even dual checkpoint inhibitors in LAGC.
Three new phenols (1–3), one new cyclohexanol (4), two known phenols (5–6), and six known flavonoids (7–12) were isolated from the n-butanol of the 75% ethanol extract of all plants of Chimaphila japonica Miq. Among them, compound 5 was named and described in its entirety for the first time, and compounds 9 and 10 were reported in C. japonica for the first time. The structures of all compounds were confirmed using a comprehensive analysis of 1D and 2D NMR and HRESIMS data. Biological results show that compounds 4, 7, and 11 exhibited potent diuretic activity. The modes of interaction between the selected compounds and the target diuretic-related WNK1 kinase were investigated in a preliminary molecular docking study. These results provided insight into the chemodiversity and potential diuretic activities of metabolites in C. japonica.
Abstract Background: Cardiovascular diseases (CVDs) are the leading causes of death globally. The use of single-cell RNA sequencing (scRNA-seq) in CVDs has gained significant attention in recent years, and there is a growing body of literature on the subject. However, a thorough and impartial analysis of the existing state and trends of scRNA-seq in CVDs is lacking. This study aims to examine the development of scRNA-seq in CVDs using bibliometric and visualized analysis. Methods: Global publications on scRNA-seq and CVDs from 2009 to 2023 were extracted from the Web of Science Core Collection (WoSCC) database. The R package "Bibliometrix", VOSviewer, and CiteSpace were employed to perform a bibliometric study. Results: After applying the screening criteria and omitting documents that met exclusive criteria, this bibliometric study included 1,170 papers. These were authored by 8,595 scholars from 1,565 organizations in 57 countries or regions and were published in 369 journals, with 51,073 co-cited references included. Publication volume, citations, and relative research interest index focusing on this field have dramatically increased since 2019. The cooperation network showed that the USA, Chinese Academy of Medical Sciences, and Xin Zou were the most active country, institute, and author in this field, respectively. Circulation Research was the journal with the most publications, which was confirmed to be the top core source by Bradford’s Law. The hotspots and emerging direction in the field manifest in (1) three CVDs (atherosclerosis, myocardial infarction, and heart failure) and (2) three cell types (macrophage, fibroblast, and smooth muscle cell) Conclusions: Our study provides a systematic visualization of the research literature on scRNA-seq in CVDs and provides guidance and reference for understanding the current research status and discovering new research directions.
Exosomes have been shown to be associated with chemotherapy resistance transmission between cancer cells. However, the cargo and function of exosomes changed in response to doxorubicin(DOX) remains unclear. We compared proteome profiles of exosomes extracted from the supernatant of MCF-7(S/Exo) and MCF-7/ADR(A/Exo) cells. We confirmed the differential expression of the candidate target-exosomic-CD44 by immune gold staining and western blot. We further studied the changes of chemosensitivity and CD44 expression in MCF-7 cells co-incubated with A/Exo. We analyzed the levels of exosomal CD44 from patient plasma, then compared the sensitivity and specificity of exosomic CD44 and plasma CD44 on diagnosis of chemoresistance. We modified the MCF-7-derived exosomes loaded with siRNA against CD44 to observe the effects of targeting reduced CD44 expression in lumimal A breast cancer cells. We found that DOX increased the exosomes release from MCF-7/ADR cells and the exosomes mediated proteins intercellular transfer in breast cancer chemoresistance regulation. The candidate target of CD44 in A/Exo was much higher than in S/Exo and the increase levels of exosomic CD44 (21.65-fold) was much higher than cellular CD44(6.55-fold). The same results were obtained in clinical samples. Exosome-siRNA targeted CD44 (Exos-siCD44) could efficiently targeted to silence its expression. When co-cultured on Exos-siCD44, breast cancer cells exhibited reduced cell proliferation and enhanced susceptibility to DOX and the same phenomenon was observed in mice. Drug-resistant breast cancer cells spread resistance capacity to sensitive ones by releasing exosomes and that such effects could be partly attributed to the intercellular transfer of proteins especially CD44.
Abstract Background Phosphoglycerate mutase 5 (PGAM5), a phosphatase involved in mitochondrial homeostasis, is reported to be closely related to the metabolic stress induced by high-fat diet (HFD) or cold. In this study, we aimed to investigate the effects of PGAM5 on hepatic steatosis, inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Methods and results We generated PGAM5 global knockout (GKO) mice and their wildtype (WT) littermates using CRISPR/CAS9. The mice were fed with a high fat high fructose (HFHF) diet for 12 weeks or a methionine choline-deficient (MCD) diet (methionine choline supplemented (MCS) as control) for 6 weeks. Hepatic PGAM5 expression was up-regulated in humans with NASH and WT mice fed with HFHF and MCS, and reduced in WT mice fed with MCD diet. In HFHF-fed mice, GKO had reduced body weight, hepatic triglyceride (TG) content and serum transaminase along with decreased hepatic pro-inflammatory and pro-fibrotic responses compared with their WT control. GKO had increased expression of antioxidative gene glutathione peroxidase-6 (GPX6) and activation of mammalian target of rapamycin (mTOR). In mice fed with MCS diet, GKO significantly increased serum TNF-α and IL-6 and decreased hepatic GPX6 mRNA expression. There was no difference in hepatic steatosis, inflammation or fibrosis between GKO and WT mice fed with MCD diet. We investigated the role of PGAM5 deficiency in a variety of cell types. In differentiated THP-1 cells, PGAM5 silencing significantly increased pro-inflammatory cytokine secretion and decreased antioxidative proteins, including nuclear factor erythroid 2- related factors (NRF2), heme oxygenase-1 (HO-1) and GPX6 without affecting mTOR activity. In HepG2 cells with steatosis, PGAM5 knockdown reduced insulin sensitivity, increased mTOR phosphorylation and reduced the expression of NRF2, catalase (CAT), HO-1 and GPX6. Conversely, PGAM5 knockdown reduced TG accumulation, increased insulin sensitivity, and increased antioxidative genes in 3T3-L1 cells, despite the up-regulation in mTOR phosphorylation. Conclusions PGAM5-KO relieved hepatic steatosis and inflammation in HFHF model, promoted inflammation in MCS-fed mice and had no effects on the MCD-fed model. The distinct effects may be owing to the different effects of PGAM5-KO on anti-oxidative pathways in energy-dependent, possible involves mTOR, and/or cell type-dependent manner. Our findings suggest that PGAM5 can be a potential therapeutic target for NASH.
Supplementary Figure from Phenotype, Function, and Clinical Significance of CD26<sup>+</sup> and CD161<sup>+</sup>Tregs in Splenic Marginal Zone Lymphoma