This paper details the design of a 64×32bit 4-read 2-write register file in TSMC 65nm LP process. The register file avoids cell banking with pseudo-differential sensing scheme. Moreover, this approach enables a fully shareable and completely symmetry cell layout which shows competitive area results. Non-full-swing technique is proposed to avoid over design and improve energy efficiency. As for the timing control module, clocked pull-down circuit cuts off a possible short-current path at high clock frequency. A prototype is implemented in TSMC 65nm LP technology. The measured results demonstrate operation of 0.77GHz, consuming 7.08mW at 1.2V, and occupying 0.018mm2.
The widespread multidrug-resistant Escherichia coli strains have caused a severe challenge to animal health and the development of breeding industries.The purpose of this study was to investigate the phylogenetic grouping and antimicrobial resistance profiles of E. coli isolated from diarrheic calves in Xinjiang province, China.In this study, a total of 379 E. coli strains were isolated from 379 rectal swab samples of diarrheic calves.They were further analyzed their phylogenetic groupings by multiplex PCR, and were clustered into four phylogenetic groups, A (36.1%), B1 (17.4%),B2 (15.6%), and D (30.9%).All E. coli isolates were tested for their susceptibility to 15 antimicrobial agents by Kirby-Bauer (KB) method.The isolates showed the highest resistance rates against ampicillin (64.9%), followed by streptomycin (59.4%), tetracycline (53.8%), sulfamethoxazole/ trimethoprim (50.9%), chloramphenicol (45.6%), kanamycin (44.1%) and enrofloxacin (42.0%).E. coli isolates exhibited lower resistance to ceftazidime (15.0%) and polymyxin (12.6%).The resistance genes blaTEM, blaOXA, mcr-1, strA-strB, aadA, tet(A), tet(B), and tet(C) were detected in 68.3% (168/246), 27.2% (67/246), 14.6% (7/48), 51.1% (115/225), 24.9% (56/225), 51.5% (105/204), 44.6% (91/204), and 7.8% (16/204) of E. coli isolates, respectively.These results demonstrate that prevalent multi-drug resistance and high level of antimicrobial resistance genes exist among E. coli from Xinjiang diarrheic calves and pose a potential public health concern.
Thyroid-associated ophthalmopathy (TAO) is an autoimmune disease that involves the remodeling of orbit and periorbital tissues. Thyroid-stimulating hormone receptor (TSHR) and insulin-like growth factor 1 receptor (IGF-1R) may stimulate the activation of autoimmunity in TAO, but the exact mechanism is unclear. We investigated whether IGF-1R/TSHR modulation in TAO may involve microRNA regulation.We conducted microarray analysis using RNA from the orbital connective tissue samples of 3 healthy and 3 patients with TAO. The involvement of differentially regulated microRNA in IGF-1R/TSHR modulation in TAO was evaluated in orbital fibroblasts (OFs) and female BALB/c mice.Using hierarchical cluster analysis, we identified that miR-143 was downregulated in TAO. The expression levels of miR-143 in OFs were significantly reduced under IL-1B stimulation. However, OF proliferation and inflammatory responses decreased when miR-143 is overexpressed. In contrast, the suppression of miR-143 increased levels of inflammatory markers (IL-6, IL-8, MCP1) and hyaluronan accumulation. Moreover, overexpression of miR-143 significantly lowers levels of IGF-1R and TSHR. A luciferase assay indicated that miR-143 targets the 3'-UTR of IGF-1R. Increases in the expression of IGF-1R increased the expression of the inflammasome marker NLRP3 and apoptotic marker cleaved caspase-1; however, miR-143 overexpression decreased levels of IGF-1R, TSHR, NLRP3, cleaved caspase 1, IL-1B, and IL-18. In a mouse model of TAO, overexpression of miR-143 significantly reduced levels of IGF-1R and attenuated the adipogenesis associated with TAO.We found that miR-143 directly targets IGF-1R to alleviate the inflammatory response in TAO by indirectly decreasing levels of TSHR and inactivating NLRP3.
Silage is rich in nutrients, which can make up for the lack of seasonal roughage, and has a certain promotion effect on the intensive feeding of ruminants. In addition, silage can maintain the rumen function of ruminants to a certain extent and reduce the risk of rumen acidosis and abomasum translocation. The purpose of this study was to investigate the effects of the mixed silage of Chinese cabbage waste and rice straw (mixed silage) on antioxidant performance, rumen microbial population, and fermentation metabolism of Hu sheep. The 16 healthy Hu sheep (eight rams and eight ewes, 39.11 ± 1.16 kg, 5.5 months) were randomly divided into two groups (the control group and the mixed silage group) with eight animals (four rams and four ewes) in each group. The control group was fed with farm roughage (peanut seedlings, corn husk, and high grain shell) as forage, and the mixed silage group was fed with the mixed silage as forage. The results showed that the mixed silage had no effect on the growth performance of Hu sheep (p > 0.05). Ruminal butyric acid, total volatile fatty acids (TVFA), and ammonia nitrogen (NH3-N) concentration in the mixed silage group were increased, whereas the pH was decreased (p < 0.05). The blood and rumen total antioxidants capacity (T-AOC) concentration in the mixed silage group was higher, and the malondialdehyde (MDA) content in rumen, serum, liver, and kidney was lower than that in the control group (p < 0.05). PCoA and ANOSIM results of Illumina sequencing indicated that the mixed silage affected the bacterial composition of the rumen microbes. The mixed silage increased the proportion of Prevotellaceae UCG-004 which was in a positive correlation with Vitamin C (Vc). In addition, PICRUSt functional prediction analysis showed that ascorbate and aldarate metabolism were up-regulated in the mixed silage group (p < 0.05). In conclusion, higher contents of VC and acid detergent fiber (ADF) in the mixed silage were beneficial to the growth and reproduction of Prevotellaceae UCG-004, resulting in increased production of the butyric acid significantly upregulated the metabolism of ascorbate and aldarate metabolism, thereby improving the antioxidant properties of Hu sheep.