Abstract Background: How to evaluate the prognosis and develop overall treatment strategies of metachronous bilateral breast cancer (MBBC) remains confused in clinical practice. Methods: Data from Surveillance, Epidemiology, and End Results (SEER) database and the first hospital of Jilin university were analyzed for breast cancer-specific cumulative mortality (BCCM) by competing risk model. Whole-exome sequencing was applied for 10 lesions acquired at spatial-temporal distinct regions from 5 patients to reconstruct clonal evolutionary characteristics of MBBC. Dimensional reduction (DR) cumulative incidence function (CIF) curves of MBBC features were established on different point in diagnostic interval time, to build a novel DR nomogram. Results: Significant heterogeneity in genome and clinical features of MBBC was widespread. The mutational diversity of contralateral BC (CBC) was significantly higher than that in primary BC (PBC), and the most effective prognostic MATH ratio was significantly correlated with interval time (R 2 =0.85, p < .05). In SEER cohort study (n=13304), the interval time was not only significantly affected the BCCM by multivariate analysis ( p < .000), but determined the weight of clinical features (T/N stage, grade and ER status) on PBC and CBC in prognostic evaluation. Thus, clinical parameters after DR based on interval time were incorporated into the nomogram for prognostic predicting BCCM. Concordance index was 0.773 (95% CI, 0.769 to 0.776) in training cohort (n=8869), and 0.819 (95% CI, 0.813 to 0.826) in validation cohort (n=4435). Conclusions: Bilateral heterogeneous characteristics and interval time were determinant prognostic factors of MBBC. The DR nomogram may help clinical prognostic evaluation.
Hepatitis-hydropericardium syndrome (HHS) is a highly fatal disease in chickens caused by the highly pathogenic fowl adenovirus serotype 4 (FAdV-4), which has severe economic consequences. The fiber2 protein exhibits excellent potential as a candidate for a subunit vaccination against FAdV-4. Despite having a high safety profile, subunit vaccines have low immunogenicity due to their lack of infectivity, which leads to low levels of immune response. As a vaccine adjuvant, Salmonella flagellin possesses the potential to augment the immunological response to vaccinations. Additionally, a crucial strategy for enhancing vaccine efficacy is efficient presentation of immune antigens to dendritic cells (DC) for targeted vaccination. In this study, we designed FAdV-4-fiber2 protein and a recombinant protein called FliBc-fiber2-SP which based on FAdV-4-fiber2 protein, was generated using the gene sequence FliBc, which retains only the conserved sequence at the amino and carboxyl termini of the flagellin B subunit, and a short peptide SPHLHTSSPWER (SP), which targets chicken bone marrow-derived DC. They were separately administered via intramuscular injection to 14-day-old specific pathogen-free (SPF) chickens, and their immunogenicity was compared. At 21 days post vaccination (dpv), it was found that the FliBc-fiber2-SP recombinant protein elicited significantly higher levels of IgG antibodies and conferred a vaccine protection rate of up to 100% compared to its counterpart fiber2 protein. These results suggest that the DC-targeted peptide fusion strategy for flagellin chimeric antigen construction can effectively enhance the immune protective efficacy of antigen proteins.
To confirm the B cell epitope recognized by monoclonal antibody (MAb) 3G11 of bluetongue virus type 8 (BTV-8) VP2 protein prepared in our laboratory, antigen epitopes recognized by 3G11 were screened and identified by phage display technology. KLLAT sequence was found by sequencing of blue spot after four rounds panning and 283LL284 of common short peptide sequence was obtained after comparison to amino acid sequence of BTV-8 VP2 protein. The peptide sequences KLLAA, KALAT, KLAAT and KLLAT were synthesized and identified by indirect ELISA. KLLAA and KLLAT bound strongly with supernatant and as cites of 3G11 cells and reacted specifically with BTV-8 positive standard sera. Further sequence analysis showed that amino acid sequence 283LL284 was conserved among different serotypes of BTV-8 strains, and283LL284 was the key amino acids of antigen epitopes recognized by 3G11. This study laid the foundation to establish type 8 BTV specific immunological detection methods.为研究本实验室制备的一株抗蓝舌病病毒8型 (BTV-8) VP2蛋白的单克隆抗体 (MAb) 3G11识别的B细胞抗原表位,利用噬菌体肽库展示技术对3G11识别的抗原表位进行筛选并鉴定。经过4轮淘选后挑取蓝斑测序,测序结果经分析后获得KLLAT序列,与BTV-8 VP2蛋白氨基酸序列比对后获得共同的短肽序列为283LL284;合成4种短肽序列:KLLAA、KALAT、KLAAT和KLLAT,与3G11细胞上清和腹水分别进行间接ELISA鉴定,结果表明,短肽KLLAA和KLLAT与3G11细胞上清及腹水具有较强的结合能力;与24种BTV标准阳性血清反应结果表明,这两种短肽都可与BTV-8阳性血清发生特异性反应;序列分析结果可见,该表位的氨基酸序列283LL284在不同来源的BTV-8毒株间保守,确定283LL284为MAb3G11识别抗原表位的关键氨基酸。本研究为建立8型BTV特异性的免疫学检测方法和相关病毒蛋白的功能研究奠定了基础。.
Sialylation aberration has been implicated in lung cancer development by altering signaling pathways. Hence, it is urgent to identify key sialyltransferases in the development of lung adenocarcinoma (LUAD), which is a common malignant subtype of non-small cell lung cancer. Herein, by systematically investigating the expression levels of ST3GAL family members in several public databases, we consistently found the frequent downregulation of ST3GAL6 in LUAD samples. Its downregulation is significantly negatively associated with stage, and significantly reduced in proximal-proliferative molecular subtype and predicts poor clinical outcomes. By protein-protein interaction network analysis and validation, we found that ST3GAL6 deficiency promotes LUAD cell invasiveness with the activated EGFR/MAPK signaling, accompanied by the elevated expression levels of matrix metalloproteinases 2 and 9, which can be partially reversed by EGFR inhibitor, gefitinib. Additionally, the ST3GAL6 level was positively regulated by ST3GAL6-AS1, an antisense long non-coding RNA to its host gene. The downregulation of ST3GAL6-AS1 also heralds a worse prognosis in LUAD patients and promotes LUAD cell invasiveness, recapitulating the function of its host gene, ST3GAL6. Altogether, ST3GAL6-AS1-regulated ST3GAL6 is a frequently downregulated sialyltransferase in LUAD patients and negatively regulates EGFR signaling, which can serve as a promising independent prognostic marker in LUAD patients.
The present study aims to examine the effect of low-dose ionizing irradiation on DNA double strand breaks (DSB) in mouse spermatogonial stem cells (SSCs) and reveal the underlying pathways for the DNA repair for DSB in SSCs. Eighteen one-month-old mice were divided into 6 groups and sacrificed separately at 45 minutes, 2 hours, 24 hours, 48 hours, and 72 hours after 0.1Gy X-ray irradiation (mice without receiving ionizing irradiation served as control). After perfusion fixation, testes were removed, sectioned, and followed by staining of γH2AX, 53BP1, Caspase 3, and promyelocytic leukemia zinc-finger (PLZF) for analysis among the different groups. The staining was observed by immunofluorescence visualized by confocal laser scanning. After low-dose irradiation, only 53BP1, but not Caspase3 or γH2AX was upregulated in PLZF positive SSCs within 45 minutes. The expression level of 53BP1 gradually decreased 24 hours after irradiation. Moreover, low-dose irradiation had no effect on the cell number and apoptotic status of SSCs. However other spermatogenic cells highly expressed γH2AX shortly after irradiation which was dramatically reduced following the events of DNA repair. It appears that low-dose ionizing irradiation may cause the DNA DSB of mouse spermatogenic cells. 53BP1, but not γH2AX, is involved in the DNA repair for DSB in SSCs. Our data indicates that 53BP1 plays an important role in the pathophysiological repair of DNA DSB in SSCs. This may open a new avenue to understanding the mechanisms of DNA repair of SSCs and male infertility.
Autophagy is an important cellular response against intracellular pathogens. However, some viruses have evolved mechanisms to hijack this defensive process to provide favorable conditions for virus replication in host cells. The porcine epidemic diarrhea virus (PEDV) has been shown to alter autophagy pathways; however, it is still unknown through which receptors PEDV induces autophagy in IPEC-J2 cells, whether autophagy facilitates PEDV replication, and which functional domains of PEDV proteins are primarily responsible for inducing autophagy. Here, we found that PEDV infection induces autophagy in host cells via distinct and uncoupled molecular pathways. RNA-seq technology was used to analyze the expression patterns of intracellular genes in PEDV-infected IPEC-J2 cells using transcriptomics. The results demonstrate that PEDV triggers autophagy via the cellular pathogen receptor TLR4 and the AKT-mTOR pathway. As evidenced by autophagosome detection, PEDV infection increases autophagosomes and light chain 3 (LC3)-II as well as downregulated AKT-mTOR phosphorylation. Our study revealed that the binding of the viral protein NSP61-2C (56-151aa) to TLR4 triggers autophagy and inactivates the AKT-mTOR pathway, both of which are critical for facilitating PEDV infection. Through screening and analysis, TLR4 was found to be a key gene involved in PEDV-induced autophagy. The screening of the key functional domains of NSP6 (56-151aa) for their ability to induce autophagy in IPEC-J2 cells provided a basis for the in-depth analysis of the pathogenic mechanism of PEDV infection-induced autophagy and promotion of self-replication and also provided an important target for the study of PEDV antiviral drugs. In conclusion, we elucidated that the PEDV infection of IPEC-J2 cells could induce autophagy and found that PEDV could use autophagy to promote its own replication.
Cancer cells are intimately intertwined with tumor microenvironment (TME), fostering a symbiotic relationship propelling cancer progression. However, the interaction between cancer cells and tumor-associated macrophages (TAMs) in urothelial bladder cancer (UBC) remains poorly understood.
Abstract Although the long-term survival rate of localized prostate cnacer is high, prostate cancer is prone to drug resistance and metastasis after intensive multimodal therapy, significantly shortening patient survival. However, the mechanisms by which drug resistance and metastasis occur in prostate cancer are unknown, and there are no effective targeted drugs to treat metastatic prostate cancer. Therefore, the goal of this study was to construct a single-cell transcriptome atlas of prostate cancer by using single-cell RNA sequencing data through bioinformatics techniques, to explore the changes in abundance and function of different cell subpopulations during drug resistance and metastasis, and to speculate on the molecular pathways that may lead to drug resistance and metastasis. We analyzed the tumor cell subpopulation and predicted that the ASCL1, RORB, RBP1 and CALML5 might be the genes responsible for the development of drug resistance and metastasis, providing potential targets for targeted prostate cancer therapy. In addition, we performed differentiation potential analysis, trajectory analysis, and intercellular communication analysis on tumor cell subpopulations, which identified key ligand-receptor interactions between tumor cells and stromal cells that lead to disease progression, such as CCL5-SDC1/4, ICOSLG-ICOS and CD24-SIGLEC10. Our analysis identified potential targets to treat resistance and metastasis in prostate cancer, suggesting key ligand-receptor interactions that might contribute to disease progression, and provided valuable insights into targeted therapy for prostate cancer.