Winter wheat cultivar Liangxing 99, which carries gene Pm52, is resistant to powdery mildew at both seedling and adult-plant stages. An F2:6 recombinant inbred line population from cross Liangxing 99 × Zhongzuo 9504 was phenotyped with Blumeria graminis f. sp. tritici isolate Bgt27 at the adult-plant stage in four field tests and the seedling stage in a greenhouse test. The analysis of bulk segregant RNA sequencing (BSR-Seq) identified a single-nucleotide polymorphism-enriched locus, Qaprpm.caas.2B, on chromosome 2BL in the same genomic interval of Pm52 associated with the all-stage resistance (ASR) and Qaprpm.caas.7A on chromosome 7AL associated with the adult-plant resistance (APR) against the disease. Qaprpm.caas.2B was detected in a 1.3 cM genetic interval between markers Xicscl726 and XicsK128 in which Pm52 was placed with a range of logarithm of odds (LOD) values from 28.1 to 34.6, and the phenotype variations explained in terms of maximum disease severity (MDS) ranged from 45 to 52%. The LOD peak of Qaprpm.caas.7A was localized in a 4.6 cM interval between markers XicsK7A8 and XicsK7A26 and explained the phenotypic variation of MDS ranging from 13 to 16%. The results of this study confirmed Pm52 for ASR and identified Qaprpm.caas.7A for APR to powdery mildew in Liangxing 99.
Epidermal wax covers the surfaces of terrestrial plants to resist biotic and abiotic stresses. Wax-less flowering Chinese cabbage (Brassica campestris L. ssp. chinesis var. utilis tsen et lee) has the charateristics of lustrous green leaves and flower stalks, which are of high commercial value.To clarify the mechanism of the wax deficiency, the wax-less flowering Chinese cabbage doubled-haploid (DH) line 'CX001' and Chinese cabbage DH line 'FT', obtained from isolated microspore culture, were used in the experiments. Genetic analysis showed that the wax-less phenotype of 'CX001' was controlled by a recessive nuclear gene, named wlm1 (wax-less mutation 1), which was fine-mapped on chromosome A09 by bulked segregant analysis sequencing (BSA-seq) of B.rapa genome V3.0. There was only one gene (BraA09g066480.3C) present in the mapping region. The homologous gene in Arabidopsis thaliana is AT1G02205 (CER1) that encodes an aldehyde decarboxylase in the epidermal wax metabolism pathway. Semi-quantitative reverse transcription PCR and transcriptome analysis indicated that BraA09g066480.3C was expressed in 'FT' but not in 'CX001'. BraA09g066480.3C was lost in the CXA genome to which 'CX001' belonged.The work presented herein demonstrated that BraA09g066480.3C was the causal gene for wax-less flowering Chinese cabbage 'CX001'. This study will lay a foundation for further research on the molecular mechanism of epidermal wax synthesis in flowering Chinese cabbage.
Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt), a biotrophic fungal species. It is very important to mine new powdery mildew (Pm) resistance genes for developing resistant wheat cultivars to reduce the deleterious effects of the disease. This study was carried out to characterize the Pm gene in Qingxinmai, a winter wheat landrace from Xinjiang, China. Qingxinmai is resistant to many Bgt isolates collected from different wheat fields in China. F 1 , F 2 , and F 2:3 generations of the cross between Qingxinmai and powdery mildew susceptible line 041133 were developed. It was confirmed that a single recessive gene, PmQ, conferred the seedling resistance to a Bgt isolate in Qingxinmai. Bulked segregant analysis-RNA-Seq (BSR-Seq) was performed on the bulked homozygous resistant and susceptible F 2:3 families, which detected 57 single nucleotide polymorphism (SNP) variants that were enriched in a 40 Mb genomic interval on chromosome arm 2BL. Based on the flanking sequences of the candidate SNPs extracted from the Chinese Spring reference genome, 485 simple sequence repeat (SSR) markers were designed. Six polymorphic SSR markers, together with nine markers that were anchored on chromosome arm 2BL, were used to construct a genetic linkage map for PmQ. This gene was placed in a 1.4 cM genetic interval between markers Xicsq405 and WGGBH913 corresponding to 4.9 Mb physical region in the Chinese Spring reference genome. PmQ differed from most of the other Pm genes identified on chromosome arm 2BL based on its position and/or origin. However, this gene and Pm63 from an Iranian common wheat landrace were located in a similar genomic region, so they may be allelic.
Abstract Pleiotropy is frequently detected in agronomic traits of wheat ( Triticum aestivum ). A locus on chromosome 4B, QTn/Ptn/Sl/Sns/Al/Tgw/Gl/Gw.caas-4B , proved to show pleiotropic effects on tiller, spike, and grain traits using a recombinant inbred line (RIL) population of Qingxinmai × 041133. The allele from Qingxinmai increased tiller numbers, and the allele from line 041133 produced better performances of spike traits and grain traits. Another 52 QTL for the eight traits investigated were detected on 18 chromosomes, except for chromosomes 5D, 6D, and 7B. Several genes in the genomic interval of the locus on chromosome 4B were differentially expressed in crown and inflorescence samples between Qingxinmai and line 041133. The development of the KASP marker specific for the locus on chromosome 4B is useful for molecular marker-assisted selection in wheat breeding.
RNA-seq technology offers the promise of rapid comprehensive discovery of long intervening noncoding RNAs (lincRNAs). Basic tools such as Tophat and Cufflinks have been widely used for RNA-seq assembly. However, advanced bioinformatics methodologies that allow in-depth analysis of lincRNAs are lacking. Here, we describe a computational protocol that is especially designed for the identification of novel lincRNAs and the prediction of the function. The protocol mainly includes two open-access tools, CNCI and ncFANs. CNCI allows users to distinguish noncoding from protein-coding transcripts and to retrieve novel lincRNAs. ncFANs integrates expression profiles of protein-coding and lincRNA genes to construct coexpression networks. Such networks are subsequently used to perform function predictions of unknown lincRNAs. This protocol will allow users to apply these procedures without the need of additional training. All the tools in current protocol are available http://www.bioinfo.org/np/.