In e-commerce environments, the trustworthiness of a seller is utterly important to potential buyers, especially when a seller is not known to them. Most existing trust evaluation models compute a single value to reflect the general trustworthiness of a seller without taking any transaction context information into account. With such a result as the indication of reputation, a buyer may be easily deceived by a malicious seller in a transaction where the notorious value imbalance problem is involved—in other words, a malicious seller accumulates a high-level reputation by selling cheap products and then deceives buyers by inducing them to purchase more expensive products. In this article, we first present a trust vector consisting of three values for contextual transaction trust (CTT). In the computation of CTT values, three identified important context dimensions , including Product Category, Transaction Amount, and Transaction Time, are taken into account. In the meantime, the computation of each CTT value is based on both past transactions and the forthcoming transaction. In particular, with different parameters specified by a buyer regarding context dimensions, different sets of CTT values can be calculated. As a result, all of these trust values can outline the reputation profile of a seller that indicates the dynamic trustworthiness of a seller in different products, product categories, price ranges, time periods, and any necessary combination of them. We name this new model ReputationPro . Nevertheless, in ReputationPro , the computation of reputation profile requires new data structures for appropriately indexing the precomputation of aggregates over large-scale ratings and transaction data in three context dimensions, as well as novel algorithms for promptly answering buyers’ CTT queries. In addition, storing precomputed aggregation results consumes a large volume of space, particularly for a system with millions of sellers. Therefore, reducing storage space for aggregation results is also a great demand. To solve these challenging problems, we first propose a new index scheme CMK-tree by extending the two-dimensional K-D-B-tree that indexes spatial data to support efficient computation of CTT values. Then, we further extend the CMK-tree and propose a CMK-tree RS approach to reducing the storage space allocated to each seller. The two approaches are not only applicable to three context dimensions that are either linear or hierarchical but also take into account the characteristics of the transaction-time model—that is, transaction data is inserted in chronological order. Moreover, the proposed data structures can index each specific product traded in a time period to compute the trustworthiness of a seller in selling a product. Finally, the experimental results illustrate that the CMK-tree is superior in efficiency of computing CTT values to all three existing approaches in the literature. In particular, while answering a buyer’s CTT queries for each brand-based product category, the CMK-tree has almost linear query performance. In addition, with significantly reduced storage space, the CMK-tree RS approach can further improve the efficiency in computing CTT values. Therefore, our proposed ReputationPro model is scalable to large-scale e-commerce Web sites in terms of efficiency and storage space consumption.
As semiconductor based devices are manufactured on ever thinner silicon substrates, the required associated die break strength has to increase commensurately to maintain pick yields. In this study, the influence of laser processing parameters on the die break strength in laser dicing of silicon oxide-coated silicon wafers and silicon-based memory devices is investigated experimentally using ultraviolet lasers spanning a wide range of pulse width, from 400 fs to 150 ns. It is found that the net fluence, an accumulated pulse energy per surface area, is a meaningful process metric for damage induced by heat-affect zone to compare lasers processes with a large variety of pulse widths, laser scan speed, average powers, and repetition rates. Optimized process conditions for both nanosecond and femtosecond pulse widths are identified for achieving the highest die break strength in the target devices. The dependence of heat-affected zone on pulse width and net fluence during nanosecond laser processing is further demonstrated using multiphysical simulations. Simulations suggest that the thickest heat-affected zone section during laser scribing is typically located at the boundary of the laser incident surface. Simulation results also show that for a given repetition rate the heat-affected zone becomes larger as the net fluence increases due to smaller interpulse separation, consistent with the experimental observation.
A dual purpose femtosecond laser processing and 5D spectroscopic (xyz, time, wavelength) microscopy system provides intelligent in-situ analysis and on-the-fly control of optical waveguides during laser writing. Definitive evidence of heat accumulation effects is reported.
A femtosecond fiber laser was applied to fabricate broadband directional couplers inside bulk glass for general power splitting application in the 1250 to 1650-nm wavelength telecom spectrum. The broadband response was optimized over the 400-nm bandwidth by tailoring the coupling strength and the waveguide interaction length to balance the differing wavelength dependence of the straight interaction and bent transition regions. High spatial finesse of the femtosecond-laser writing technique enabled close placement (approxiamtely 6 microm) of adjacent waveguides that underpinned the wavelength-flattened broadband response at any coupling ratio in the 0% to 100% range. The spectral responses were well-represented by coupled mode theory, permitting simple design and implementation of broadband couplers for bulk 3D optical circuit integration.
Chirped Bragg grating waveguides of up to 20-nm bandwidth (3-dB) were inscribed inside fused silica glass in a single laser waveguide-writing step driven by burst modulation of a high repetition rate femtosecond fiber laser.
A femtosecond fiber laser with 1.5-MHz repetition rate was used to write directional couplers inside bulk glasses for the first time in the 1550-nm band. Waveguide losses and coupling strengths are reported for borosilicate glass.
High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for rapid writing of low-loss optical waveguides in transparent glasses. A novel femtosecond fiber laser system (IMRA America, FCPA muJewel) providing variable repetition rate between 0.1 and 5 MHz was used to study the relationship between heat accumulation and resulting waveguide properties in fused silica and various borosilicate glasses. Increasing repetition rate was seen to increase the waveguide diameter and decrease the waveguide loss, with waveguides written with 1-MHz repetition rate yielding ~0.2-dB/cm propagation loss in Schott AF45 glass. A finite-difference thermal diffusion model accurately tracks the waveguide diameter as cumulative heating expands the modification zone above 200-kHz repetition rate.
During high repetition rate (>200 kHz) ultrafast laser waveguide writing, visible heat modified zones surrounding the formed waveguide occur as a result of heat accumulation. The radii of the heat-modified zones increase with the laser net fluence, and were found to correlate with the formation of low-loss and cylindrically symmetric optical waveguides. A numerical thermal model based on the finite difference method is applied here to account for cumulative heating and diffusion effects. The model successfully shows that heat propagation and accumulation accurately predict the radius of the 'heat modified' zones observed in borosilicate glass waveguides formed across a wide range of laser exposure conditions. Such modelling promises better control of thermal effects for optimizing the fabrication and performance of three-dimensional optical devices in transparent materials.