Technical analysis is the study for forecasting future asset prices with past data. In this survey, we review and extend studies on not only the time-series predictive power of technical indicators on the aggregated stock market and various portfolios, but also the cross-sectional predictability with various firm characteristics. While we focus on reviewing major academic research on using traditional technical indicators, but also discuss briefly recent studies that apply machine learning approaches, such as Lasso, neural network and genetic programming, to forecast returns both in the time-series and on the cross-section.
The current clinical outcome for patients with metastatic pancreatic carcinoma (PC) remains poor. Epidermal growth factor receptor (EGFR) is detectable in PC, suggesting that EGFR is a rational target in PC. We conducted a phase I clinical trial to evaluate the safety and efficacy of autologous anti-EGFR chimeric antigen receptor-modified T (CAR T-EGFR) cells in patients with metastatic PC. The expression levels of EGFR on tumor cells detected by immunohistochemistry were required to be more than 50%. Sixteen patients were enrolled and received one to three cycles of the CAR T-EGFR cell infusion within 6 months (median dose of CAR T cells: 3.48 × 106/kg; range, 1.31 to 8.9 × 106/kg) after the conditioning regimen with 100 to 200 mg/m2 nab-paclitaxel and 15 to 35 mg/kg cyclophosphamide. Grade ≥3 adverse events included fever/fatigue, nausea/vomiting, mucosal/cutaneous toxicities, pleural effusion and pulmonary interstitial exudation and were reversible. Of 14 evaluable patients, four achieved partial response for 2-4 months, and eight had stable disease for 2-4 months. The median progression-free survival was 3 months (range, 4-months) from the first cycle of CAR T-EGFR cell treatment, and the median overall survival of all 14 evaluable patients was 4.9 months (range, 2.9-30 months). Decreased EGFR expression on tumor cells was observed in patients who achieved stable disease with shrinkage of metastatic lesions in the liver, and enrichment of central memory T cells in infused cells improved the clinical response. In conclusion, the treatment with CAR T-EGFR cells is safe and effective in patients with metastatic PC. This trial was registered at www.clinicaltrials.gov (identifier no: NCT01869166).
The seven pathogenic human coronaviruses (HCoVs) include HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1, which usually cause mild upper respiratory tract diseases, and SARS-CoV, MERS-CoV, and SARS-CoV-2, which cause a severe acute respiratory syndrome. The nucleocapsid (N) protein, as the dominant structural protein from coronaviruses that bind to the genomic RNA, participates in various vital activities after virus invasion and will probably become a promising target of antiviral drug design. Therefore, a comprehensive literature review of human coronavirus’ pathogenic mechanism and therapeutic strategies is necessary for the control of the pandemic. Here, we give a systematic summary of the structures, immunoregulation, and potential vaccines and targeted drugs of the HCoVs N protein. First, we provide a general introduction to the fundamental structures and molecular function of N protein. Next, we outline the N protein mediated immune regulation and pathogenesis mechanism. Finally, we comprehensively summarize the development of potential N protein-targeted drugs and candidate vaccines to treat coronavirus disease 2019 (COVID-19). We believe this review provides insight into the virulence and transmission of SARS-CoV-2 as well as support for further study on epidemic control of COVID-19.
Pessimists have made passive predictions for the impact of SARS. However, after an objective analysis of consumption confidence from consumers and the changes of consumption psychology, recovery of industries damaged, and new industry development that is brought by new opportunities, the negative impact of SARS on China's economy is rather limited, which experienced a short period of market weakness and is bound to go on a high development.
Extensive efforts have been made to understand and improve the fairness of machine learning models based on observational metrics, especially in high-stakes domains such as medical insurance, education, and hiring decisions. However, there is a lack of certified fairness considering the end-to-end performance of an ML model. In this paper, we first formulate the certified fairness of an ML model trained on a given data distribution as an optimization problem based on the model performance loss bound on a fairness constrained distribution, which is within bounded distributional distance with the training distribution. We then propose a general fairness certification framework and instantiate it for both sensitive shifting and general shifting scenarios. In particular, we propose to solve the optimization problem by decomposing the original data distribution into analytical subpopulations and proving the convexity of the subproblems to solve them. We evaluate our certified fairness on six real-world datasets and show that our certification is tight in the sensitive shifting scenario and provides non-trivial certification under general shifting. Our framework is flexible to integrate additional non-skewness constraints and we show that it provides even tighter certification under different real-world scenarios. We also compare our certified fairness bound with adapted existing distributional robustness bounds on Gaussian data and demonstrate that our method is significantly tighter.
MIR503HG is a 786 bp long lncRNA located on chromosome Xq26.3, and it can regulate diverse cellular processes. The pathogenesis of adenomyosis (AD) is associated with endometrial stromal cells (ESCs). The present study investigated the specific role of MIR503HG in AD pathogenesis and progression using ESCs derived from the endometrium of patients with AD as a model. Expression of MIR503HG and microRNA (miR)-191 were assessed using reverse transcription-quantitative PCR. An immunocytochemistry assay was used to detect cytokeratin- or vimentin-positive ESCs. Transfections of ESCs with MIR503HG overexpression plasmid, short hairpin-MIR503HG and miR-191 inhibitor were performed. ESC viability, migration, invasion and apoptosis were evaluated using Cell Counting Kit-8, Transwell and flow cytometry assays. The association between MIR503HG and miR-191 was predicted by StarBase and confirmed using a dual-luciferase reporter assay. Expression of epithelial-mesenchymal transition-related markers (E-cadherin and N-cadherin) and Wnt/β-catenin pathway-related molecules (β-catenin) in ESCs were analyzed by western blotting. The isolated ESCs were vimentin-positive and cytokeratin-negative. MIR503HG was lowly expressed in the endometrial tissues derived from patients with AD. MIR503HG overexpression hindered ESC viability, migration and invasion while enhancing the apoptosis and downregulating miR-191 expression. MIR503HG knockdown induced the opposite effects, accompanied by downregulation of the E-cadherin expression and upregulation of N-cadherin and β-catenin levels. MIR503HG directly targeted miR-191 that was highly expressed in endometrial tissues derived from patients with AD. In ESCs, downregulation of miR-191 inhibited the viability, migration and invasion and the expression of N-cadherin and β-catenin levels while enhancing the apoptosis and E-cadherin expression in ESCs. Moreover, downregulation of miR-191 partially reversed the effect of MIR503HG knockdown. Collectively, overexpressed MIR503HG impeded the proliferation and migration of ESCs derived from endometrium of patients with AD, while promoting apoptosis via inhibition of the Wnt/β-catenin pathway via targeting miR-191.