Cubic boron nitride (cBN) superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness, such as titanium alloys and superalloys. However, grinding with multilayered metallic cBN superabrasive wheels faces problems in terms of grain wear resistance, the chip storage capability of the working layers and the stability and controllability of the dressing process. Therefore, in this work, novel metallic cBN superabrasive wheels with aggregated cBN (AcBN) grains and open pore structures were fabricated to improve machining efficiency and surface quality. Prior to the grinding trials, the air-borne abrasive blasting process was conducted and the abrasive blasting parameters were optimized in view of wear properties of cBN grains and metallic matrix materials. Subsequently, the comparative experiments were performed and then the variations in grinding force and force ratio, grinding temperature, tool wear morphology and ground surface quality of the multilayered AcBN grinding wheels were investigated during machining Ti–6Al–4V alloys. In consideration of the variations of grain erosion wear volume and material removal rate per unit of pure metallic matrix materials as the abrasive blasting parameters changes, the optimal abrasive blasting parameters were identified as the SiC abrasive mesh size of 60# and the abrasive blasting distance and time of 60 mm and 15 s, respectively. The as-developed AcBN grains exhibited better fracture toughness and impact resistance than monocrystalline cBN (McBN) grains because of the existence of metal-bonded materials amongst multiple cBN particles that decreased crack propagation inside whole grains. The metallic porous AcBN wheels had lower grinding forces and temperature and better ground surface quality than vitrified McBN wheels due to the constant layer-by-layer exposure of cBN particles in the working layer of the AcBN wheels.
In order to improve the dynamic performance of the grinding machine and improve the machining precision of the machine tool, a modal experiment is conducted on the complete machine and main sub-structures of the series-parallel hybrid grinding and polishing machine tool according to the basic theory of experimental modal analysis. Also, hammer impulse excitation and varied-time-based sampling methods are adopted to perform experimental modal analysis. Meanwhile, the eigensystem realization algorithm (ERA) is utilized to identify modal parameters, so that the low-order natural frequency, damping ratio and modal shape of the complete machine and its main substructures can be obtained. Based on the analysis of frequency and vibration mode, the beam is a weak link of the machine tool, while an approach to improve the dynamic characteristics of the machine tool structure is proposed to provide a basis for the optimized design of dynamics.
Abstract Aero-engines, the core of air travel, rely on advanced high strength-toughness alloys (THSAs) such as titanium alloys, nickel-based superalloys, intermetallics, and ultra-high strength steel. The precision of cutting techniques is crucial for the manufacture of key components including blades, discs, shafts, and gears. However, machining THSAs poses significant challenges, including high cutting forces and temperatures, which lead to rapid tool wear, reduced efficiency, and compromised surface integrity. This review thoroughly explores the current landscape and future directions of cutting techniques for THSAs in aero-engines. It examines the principles, mechanisms, and benefits of energy-assisted cutting technologies like laser-assisted machining and cryogenic cooling. The review assesses various tool preparation methods, their effects on tool performance, and strategies for precise shape and surface integrity control. It also outlines intelligent monitoring technologies for machining process status, covering aspects such as tool wear, surface roughness, and chatter, contributing to intelligent manufacturing. Additionally, it highlights emerging trends and potential future developments, including multi-energy assisted cutting mechanisms, advanced cutting tools, and collaborative control of structure shape and surface integrity, alongside intelligent monitoring software and hardware. This review serves as a reference for achieving efficient and high-quality manufacturing of THSAs in aero-engines.
Abstract In order to study the rule of lateral uplift of pure aluminum (purity is 99.999%) during mechanical scribing, based on the mechanical scribing test device, the tool tip angles are 80 °, 85 °, 90 °, 95 °, 100 ° The diamond cone cutter is used to perform mechanical scoring test on pure aluminum with a depth range of 5μm-25μm. Through the bump height detection analysis, lateral ridge height and groove depth - mathematical statistical relationship knife sharp corners, through the known parameters such as groove depth, groove on the bump height is pre-sentence, thereby pre-Groove play an important role in the control.
Thermal error modeling method is an important field of thermal error compensation on NC machine tools, it is also a key for improving the machining accuracy of machine tools. The accuracy of the model directly affects the quality of thermal error compensation. On the basis of multiple linear regression (MLR) model, this paper proposes an autoregressive distributed lag (ADL) model of thermal error and establishes an accurate ADL model by stepwise regression analysis. The ADL model of thermal error is established with measured data, it proved the ADL model is available and has a high accuracy on predicting thermal error by comparing with MLR models.
Presently, the service performance of new-generation high-tech equipment is directly affected by the manufacturing quality of complex thin-walled components. A high-efficiency and quality manufacturing of these complex thin-walled components creates a bottleneck that needs to be solved urgently in machinery manufacturing. To address this problem, the collaborative manufacturing of structure shape and surface integrity has emerged as a new process that can shorten processing cycles, improve machining qualities, and reduce costs. This paper summarises the research status on the material removal mechanism, precision control of structure shape, machined surface integrity control and intelligent process control technology of complex thin-walled components. Numerous solutions and technical approaches are then put forward to solve the critical problems in the high-performance manufacturing of complex thin-wall components. The development status, challenge and tendency of collaborative manufacturing technologies in the high-efficiency and quality manufacturing of complex thin-wall components is also discussed.