The experiments presented in this study demonstrate that there exist at least two functional epitopes on an I-A molecule that can be recognized by T cell clones. By comparing the abilities of spleen cells from C57BL/6 mice and the congenic I-A mutant line B6.C-H-2bm12 to stimulate alloreactive T cell clones specific for the I-Ab molecule, we have discriminated two sets of clones, those recognizing the I-Ab and I-Abm12 molecule equally well and those able to recognize only the I-Ab molecule. These results imply that the two sets of clones have different receptors for I-A and that they therefore recognize separate epitopes on the I-A molecule. We have similarly been able to separate T cell clones, both alloreactive and L-glutamic acid60-L-alanine30-L-tyrosine10-reactive, specific for the Ab alpha Ak beta hybrid molecule into two groups based on their ability to recognize bm 12 spleen cells. Although the recognition of bm 12 spleen cells by these clones was unexpected since none of them responds to B6 spleen cells, these data again allow us to conclude that these groups of clones have different receptors for the same I-A molecule and therefore that they recognize distinct epitopes on the molecule. Additional studies, in which monoclonal anti-I-A antibodies were used to block the stimulation of T cells by stimulator or antigen-presenting cells, have demonstrated that this blockade can be a steric effect and therefore is not necessarily indicative of direct competition between the antibody and the T cell for the same site on an I-A molecule. Although this study does not reveal the physical nature of an I region-controlled "antigen-restriction site," we can suggest that increasing the number of possible functional Ia restriction sites either through combinatorial association of alpha and beta chains or by using more than one site per molecule will increase the number of configurations the ternary complex of Ia, antigen and T cell receptor(s) can form.
Objective: The availability of non-invasive brain imaging permits the study of normal and abnormal brain development in childhood and adolescence. This paper summarizes current knowledge of brain abnormalities of two conditions, attention deficit hyperactivity disorder (ADHD) and childhood onset schizophrenia (COS), and illustrates how such findings are bringing clinical and preclinical perspectives closer together. Method: A selected review is presented of the pattern and temporal characteristics of anatomic brain magnetic resonance imaging (MRI) studies in ADHD and COS. These results are discussed in terms of candidate mechanisms suggested by studies in developmental neuroscience. Results: There are consistent, diagnostically specific patterns of brain abnormality for ADHD and COS. Attention deficit hyperactivity disorder is characterized by a slightly smaller (4%) total brain volume (both white and grey matter), less-consistent abnormalities of the basal ganglia and a striking (15%) decrease in posterior inferior cerebellar vermal volume. These changes do not progress with age. In contrast, patients with COS have smaller brain volume due to a 10% decrease in cortical grey volume. Moreover, in COS there is a progressive loss of regional grey volume particularly in frontal and temporal regions during adolescence. Conclusions: In ADHD, the developmental pattern suggests an early non-progressive ‘lesion’ involving neurotrophic factors controlling overall brain growth and selected dopamine circuits. In contrast, in COS, which shows progressive grey matter loss, various candidate processes influencing later synaptic and dendritic pruning are suggested by human post-mortem and developmental animal studies.
Effect of ethanol administration of hepatic metabolism was studied. After the ethanol administration (5 g/kg ip) blood alcohol concentration reached a maximum level in 60 min and there was no detectable alcohol after 12 hr. Glycogen concentration decreased after ethanol administration. Total liver lipid exhibited a maximal increase in 12 hr after ethanol administration. Oxidation of 14C alanine and 14C glucose was impaired at 10 min, 1, and 12 hr after ethanol administration. However, the incorporation of 14C alanine into glucose was increased in 1–12 hr.
Class II-restricted T cell clones specific for myelin basic protein (MBP) have been generated from PL/J and (PL/J X SJL/J)F1 [((PLSJ)F1] mice following sensitization to rat MBP. Of 17 T cell clones generated from (PLSJ)F1 mice, 5 are I-Au(A alpha uA beta u) restricted, one is restricted to I-As(A alpha sA beta s), 10 are restricted to hybrid I-A(u X s)F1 (A alpha sA beta u) determinants, and one clone is restricted to hybrid I-E(u X s) (E alpha uE beta s) molecules. Thus, of 16 I-A-restricted T cell clones generated from (PLSJ)F1 mice, only one is I-As-restricted, reflecting a lack of priming to MBP in association with I-As. T cell clones restricted to I-Au and to I-E (E alpha u E beta s) molecules recognize mouse (self) MBP. Furthermore, only the five T cell clones restricted to I-Au molecules recognize a determinant in common with mouse (self) MBP within the encephalitogenic N-terminal peptide. Three such I-Au restricted T cell clones, derived independently, cause paralysis in 100% of (PL/J X SJL/J)F1 mice tested. Acute, chronic unremitting, and chronic relapsing paralysis are all induced following injection of these clones. Administration of greater numbers of cloned T cells causes acute and fatal experimental allergic encephalomyelitis, while administration of lower numbers of cloned T cells is associated with chronic unremitting and relapsing paralysis. Paralysis induced with T cell clones shares many clinical, immunologic, and histologic aspects with human demyelinating diseases such as multiple sclerosis. Histopathology reveals perivascular lymphocytic infiltration, demyelination, and remyelination. These studies demonstrate the utility of T cell clones for analyzing the association between class II major histocompatibility complex molecules and disease susceptibility.