Abstract A novel series of Aloe‐emodin derivatives containing N‐heterocyclic moieties was designed and synthesized. The structure‐activity relationship studies (SARs) indicated that the replacement of hydroxyethyl and benzhydryl piperazine groups could improve efficacy. Compounds 12r and 14a – 14c exhibited a higher inhibitory effect on LPS‐induced nitric oxide (NO) production in RAW264.7 macrophages than Aloe‐emodin did. Among them, 12r showed the most potent inhibition with an IC 50 value of 5.66 ± 0.47 μM. Further toxicity and pharmacokinetic studies were carried out and 12r was found to be the most active structure with low toxicity risk and good metabolic properties. It could also decrease the levels of IL‐1β, TNF‐α, PGE 2 and inhibit the activation of nuclear factor‐κB signalling pathway. Importantly, 12r showed oral bioavailability of up to 55.16% and attenuated the inflammatory symptoms in an ulcerative colitis mouse model in vivo. These results indicate that 12r is suitable for development as an anti‐inflammatory agent.
ABSTRACT The life cycle of foot-and-mouth disease virus (FMDV) is tightly regulated by host cell lipid metabolism. In previous studies, we reported downregulated expression of stearoyl coenzyme A desaturase-1 (SCD1), a key enzyme of fatty acid metabolism, in BHK-VEC cells (a virus-negative cell line derived from BKH-21 cells with persistent FMDV infection) on comparing transcriptomic data for BHK-VEC and BHK-21 cells (Y. Yuan et al., Front Cell Infect Microbiol 12:940906, 2022, https://doi.org/10.3389/fcimb.2022.940906 ; L. Han et al., Vet Microbiol 263:109247, 2021, https://doi.org/10.1016/j.vetmic.2021.109247 ). In the present study, we identify that SCD1 regulates FMDV replication. SCD1 overexpression or exogenous addition of oleic acid (OA), a product of the enzymatic activity of SCD1, increased FMDV replication in both BHK-21 cells and SCD1-knockdown cells. Overexpression of SCD1 or exogenous addition of OA restored FMDV infection and replication in BHK-VEC cells, and OA also promoted FMDV replication in BHK-21 cells with persistent FMDV infection. SCD1 recruited the nonstructural FMDV protein 2C to a detergent-resistant membrane located in the perinuclear region of cells to form replication complexes. Inhibiting SCD1 enzyme activity resulted in a significantly decreased number of FMDV replication complexes with abnormal morphology. Inhibition of SCD1 activity also effectively decreased the replication of other RNA viruses such as respiratory enteric orphan virus-3-176, poliovirus-1, enterovirus 71, and vesicular stomatitis virus. Our results demonstrate that SCD1, as a key host regulator of RNA virus replication, is a potential target for developing novel drugs against infections by RNA viruses. IMPORTANCE Many positive-stranded RNA viruses, including foot-and-mouth disease virus (FMDV), alter host membranes and lipid metabolism to create a suitable microenvironment for their survival and replication within host cells. In FMDV-infected cells, the endoplasmic reticulum membrane is remodeled, forming vesicular structures that rely heavily on increased free fatty acids, thereby linking lipid metabolism to the FMDV replication complex. Nonstructural FMDV protein 2C is crucial for this complex, while host cell enzyme stearoyl coenzyme A desaturase 1 (SCD1) is vital for lipid metabolism. We found that FMDV infection alters SCD1 expression in host cells. Inhibiting SCD1 expression or its enzymatic activity markedly decreases FMDV replication, while supplementing oleic acid, a catalytic product of SCD1, regulates FMDV replication. Additionally, SCD1 forms part of the FMDV replication complex and helps recruit 2C to a detergent-resistant membrane. Our study provides insights into the pathogenesis of FMDV and a potential novel drug target against the virus.
Guided by molecular docking, a commonly used open-chain linker was cyclized into a five-membered pyrrolidine to lock the overall conformation of the propeller-shaped molecule. Different substituents were introduced into the pyrrolidine moiety to block oxidative metabolism. Surprisingly, it was found that a small methyl substituent could be used to alleviate the oxidative metabolism of pyrrolidine while maintaining or enhancing potency, which could be described as a "magic methyl". Further optimization around the "3rd blade" of the propeller led to identification of a series of potent and selective PI3Kδ inhibitors. Among them, compound 50 afforded an optimum balance of PK profiles and potency. Oral administration of 50 attenuated the arthritis severity in a dose-dependent manner in a collagen-induced arthritis model without obvious toxicity. Furthermore, 50 demonstrated excellent pharmacokinetic properties with high bioavailability, suggesting that 50 might be an acceptable candidate for treatment of inflammatory diseases.
Novel selective histone deacetylase 6 (HDAC6) inhibitors using the quinazoline as the cap were designed, synthesized, and evaluated for HDAC enzymatic assays. N-Hydroxy-4-(2-methoxy-5-(methyl(2-methylquinazolin-4-yl)amino)phenoxy)butanamide, 23bb, was the most potent selective inhibitor for HDAC6 with an IC50 of 17 nM and showed 25-fold and 200-fold selectivity relative to HDAC1 and HDAC8, respectively. In vitro, 23bb presented low nanomolar antiproliferative effects against panel of cancer cell lines. Western blot analysis further confirmed that 23bb increased acetylation level of α-tubulin in vitro. 23bb has a good pharmacokinetic profile with oral bioavailability of 47.0% in rats. In in vivo efficacy evaluations of colorectal HCT116, acute myelocytic leukemia MV4-11, and B cell lymphoma Romas xenografts, 23bb more effectively inhibited the tumor growth than SAHA even at a 4-fold reduced dose or ACY-1215 at the same dose. Our results indicated that 23bb is a potent oral anticancer candidate for selective HDAC6 inhibitor and deserves further investigation.
Foot-and-mouth disease virus (FMDV) is a single-stranded picornavirus that causes economically devastating disease in even-hooved animals. There has been little research on the function of host cells during FMDV infection. We aimed to shed light on key host factors associated with FMDV replication during acute infection. We found that HDAC1 overexpression in host cells induced upregulation of FMDV RNA and protein levels. Activation of the AKT-mammalian target of rapamycin (mTOR) signaling pathway using bpV(HOpic) or SC79 also promoted FMDV replication. Furthermore, short hairpin RNA (shRNA)-induced suppression of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), a transcription factor downstream of the AKT-mTOR signaling pathway, resulted in downregulation of FMDV RNA and protein levels. Coimmunoprecipitation assays showed that the ACTase domain of CAD could interact with the FMDV 2C protein, suggesting that the ACTase domain of CAD may be critical in FMDV replication. CAD proteins participate in de novo pyrimidine synthesis. Inhibition of FMDV replication by deletion of the ACTase domain of CAD in host cells could be reversed by supplementation with uracil. These results revealed that the contribution of the CAD ACTase domain to FMDV replication is dependent on de novo pyrimidine synthesis. Our research shows that HDAC1 promotes FMDV replication by regulating de novo pyrimidine synthesis from CAD via the AKT-mTOR signaling pathway. IMPORTANCE Foot-and-mouth disease virus is an animal virus of the Picornaviridae family that seriously harms the development of animal husbandry and foreign trade of related products, and there is still a lack of effective means to control its harm. Replication complexes would generate during FMDV replication to ensure efficient replication cycles. 2C is a common viral protein in the replication complex of Picornaviridae virus, which is thought to be an essential component of membrane rearrangement and viral replication complex formation. The host protein CAD is a key protein in the pyrimidines de novo synthesis. In our research, the interaction of CAD and FMDV 2C was demonstrated in FMDV-infected BHK-21 cells, and it colocalized with 2C in the replication complex. The inhibition of the expression of FMDV 3D protein through interference with CAD and supplementation with exogenous pyrimidines reversed this inhibition, suggesting that FMDV might recruit CAD through the 2C protein to ensure pyrimidine supply during replication. In addition, we also found that FMDV infection decreased the expression of the host protein HDAC1 and ultimately inhibited CAD activity through the AKT-mTOR signaling pathway. These results revealed a unique means of counteracting the virus in BHK-21 cells lacking the interferon (IFN) signaling pathway. In conclusion, our study provides some potential targets for the development of drugs against FMDV.
The absolute and relative configurations of bioactive chiral molecules are typically relevant to their biological properties. It is thus highly important and desirable to construct all possible stereoisomers of a lead candidate or a given bioactive natural compound. Synergistic dual catalysis has been recognized as a reliable synthetic strategy for a variety of predictable stereodivergent transformations. Despite the impressive progress made in this field, stereodivergent carbon-carbon bond-formation reactions involving stabilized nucleophiles remain elusive. Herein, we report an iridium- and magnesium-catalyzed one-pot sequential allylic alkylation/nucleophilic alkylation cascade process for the stereodivergent synthesis of all four stereoisomers of 3,3'-disubstituted oxindoles through a three-component reaction. A diverse array of products is readily prepared with high functional group compatibility in good yields with excellent diastereo- and enantioselectivities. Subsequently, the stereodivergent total synthesis of four stereoisomers of the spirooxindole alkaloid trigolutes B and D has been accomplished through a concise and unified synthetic route using the same set of starting materials.
Paeoniflorin (PF), a monoterpene glycoside isolated from P. lactiflora, possesses a variety of pharmacological activities. However, albiflorin (AF), another constituent regarded as a characteristic one, has not been well studied. This study aimed to investigate the hematopoietic effects of AF and PF on anemia mice induced by radiotherapy or chemotherapy and to explore the underlying mechanisms. The anemia mice were irradiated at a dose of 2.5 Gy using cobalt-60 gamma resources or intraperitoneally injected with cyclophosphamide (160.0 mg/kg). The numbers of blood cells from peripheral blood were counted. The thymus index and spleen index were also measured. In addition, of the chemotherapy-induced mice, the levels of TNF-α, GM-CSF, IL-3 in serum were measured by RIA. AF and PF significantly increased the numbers of peripheral blood cells and reversed the atrophy of thymus and spleen. Furthermore, AF and PF increased the levels of GM-CSF and IL-3 and reduce the level of TNF-αin serum.. Our results suggest that AF and PF may promote the recovery of bone marrow hemopoietic function in a myelosuppressed mouse model.