The impact of tumour associated stroma on cancer metastasis is an emerging field. However, cancer associated genes in peritumoral adipose tissue (pAT) in human colon cancer have not been explored. The aim of this study was to identify differentially expressed genes (DEGs) associated with cancer pathways in mesenteric pAT compared with adjacent adipose tissue. In total, nine patients with colon cancer pathological stage T2/T4 were employed in this study. DEGs were identified in 6 patients employing Nanostring PanCancer Pathway Panel and pathway enrichment analyses were performed. Differential expression of the 5 most up-regulated and 2 down regulated genes was validated with qRT-PCR. Results showed collagen type I alpha 1 chain (COL1A1) p = 0.007; secreted frizzled related protein (SFRP2) p = 0.057; fibroblast growth factor 7 (FGF7) not significant (ns); phospholipase A2, group IIA (PLA2G2A) ns; nerve growth factor receptor (NGFR) ns; lymphoid enhancer binding factor 1 (LEF1) p = 0.03; cadherin 1, Type 1, E-cadherin (epithelial) (CDH1) 0.09. Results have highlighted down-regulation of the Wingless/Integrated (Wnt) pathway in mesenteric pAT compared to distal adipose tissue. Highly upregulated genes in mesenteric pAT were involved in extracellular matrix (ECM)-receptor interactions and focal adhesion. Highly down regulated genes were involved in the cell cycle. Immunohistochemistry revealed differential distribution of COL1A1 showing maximum levels in tumour tissue and gradually decreasing in distant adipose tissue. COL1A1 and down regulation of Wnt pathway may have a role in local invasion and distant metastasis. COL1A1 may represent a stromal prognostic biomarker and therapeutic target in colon cancer.
Recent advances in whole slide imaging (WSI) technology have led to the development of a myriad of computer vision and artificial intelligence (AI) based diagnostic, prognostic, and predictive algorithms. Computational Pathology (CPath) offers an integrated solution to utilize information embedded in pathology WSIs beyond what we obtain through visual assessment. For automated analysis of WSIs and validation of machine learning (ML) models, annotations at the slide, tissue and cellular levels are required. The annotation of important visual constructs in pathology images is an important component of CPath projects. Improper annotations can result in algorithms which are hard to interpret and can potentially produce inaccurate and inconsistent results. Despite the crucial role of annotations in CPath projects, there are no well-defined guidelines or best practices on how annotations should be carried out. In this paper, we address this shortcoming by presenting the experience and best practices acquired during the execution of a large-scale annotation exercise involving a multidisciplinary team of pathologists, ML experts and researchers as part of the Pathology image data Lake for Analytics, Knowledge and Education (PathLAKE) consortium. We present a real-world case study along with examples of different types of annotations, diagnostic algorithm, annotation data dictionary and annotation constructs. The analyses reported in this work highlight best practice recommendations that can be used as annotation guidelines over the lifecycle of a CPath project.
Journal Article A scaly plaque on the left buttock Get access T. N. Shim, T. N. Shim Departments of Dermatology Dr Tang N. Shim, Department of Dermatology, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK E‐mail: tangngee@doctors.org.uk Search for other works by this author on: Oxford Academic Google Scholar Y. W. Tsang, Y. W. Tsang Pathology, University Hospitals Coventry and Warwickshire NHS Trust, UK Search for other works by this author on: Oxford Academic Google Scholar D. Snead, D. Snead Pathology, University Hospitals Coventry and Warwickshire NHS Trust, UK Search for other works by this author on: Oxford Academic Google Scholar A. Ilchyshyn A. Ilchyshyn Departments of Dermatology Search for other works by this author on: Oxford Academic Google Scholar Clinical and Experimental Dermatology, Volume 38, Issue 3, 1 April 2013, Pages 324–326, https://doi.org/10.1111/j.1365-2230.2012.04466.x Published: 01 April 2013
Knowledge of the genotype of melanoma is important to guide patient management. Identification of mutations in BRAF and c-KIT lead directly to targeted treatment, but it is also helpful to know if there are driver oncogene mutations in NRAS, GNAQ or GNA11 as these patients may benefit from alternative strategies such as immunotherapy. While polymerase chain reaction (PCR) methods are often used to detect BRAF mutations, next generation sequencing (NGS) is able to determine all of the necessary information on several genes at once, with potential advantages in turnaround time. We describe here an Ampliseq hotspot panel for melanoma for use with the IonTorrent Personal Genome Machine (PGM) which covers the mutations currently of most clinical interest. We have validated this in 151 cases of skin and uveal melanoma from our files, and correlated the data with PCR based assessment of BRAF status. There was excellent agreement, with few discrepancies, though NGS does have greater coverage and picks up some mutations that would be missed by PCR. However, these are often rare and of unknown significance for treatment. PCR methods are rapid, less time-consuming and less expensive than NGS, and could be used as triage for patients requiring more extensive diagnostic workup. The NGS panel described here is suitable for clinical use with formalin-fixed paraffin-embedded (FFPE) samples.
Histopathological examination is a crucial step in the diagnosis and treatment of many major diseases. Aiming to facilitate diagnostic decision making and improve the workload of pathologists, we developed an artificial intelligence (AI)-based prescreening tool that analyses whole-slide images (WSIs) of large-bowel biopsies to identify typical, non-neoplastic, and neoplastic biopsies.This retrospective cohort study was conducted with an internal development cohort of slides acquired from a hospital in the UK and three external validation cohorts of WSIs acquired from two hospitals in the UK and one clinical laboratory in Portugal. To learn the differential histological patterns from digitised WSIs of large-bowel biopsy slides, our proposed weakly supervised deep-learning model (Colorectal AI Model for Abnormality Detection [CAIMAN]) used slide-level diagnostic labels and no detailed cell or region-level annotations. The method was developed with an internal development cohort of 5054 biopsy slides from 2080 patients that were labelled with corresponding diagnostic categories assigned by pathologists. The three external validation cohorts, with a total of 1536 slides, were used for independent validation of CAIMAN. Each WSI was classified into one of three classes (ie, typical, atypical non-neoplastic, and atypical neoplastic). Prediction scores of image tiles were aggregated into three prediction scores for the whole slide, one for its likelihood of being typical, one for its likelihood of being non-neoplastic, and one for its likelihood of being neoplastic. The assessment of the external validation cohorts was conducted by the trained and frozen CAIMAN model. To evaluate model performance, we calculated area under the convex hull of the receiver operating characteristic curve (AUROC), area under the precision-recall curve, and specificity compared with our previously published iterative draw and rank sampling (IDaRS) algorithm. We also generated heat maps and saliency maps to analyse and visualise the relationship between the WSI diagnostic labels and spatial features of the tissue microenvironment. The main outcome of this study was the ability of CAIMAN to accurately identify typical and atypical WSIs of colon biopsies, which could potentially facilitate automatic removing of typical biopsies from the diagnostic workload in clinics.A randomly selected subset of all large bowel biopsies was obtained between Jan 1, 2012, and Dec 31, 2017. The AI training, validation, and assessments were done between Jan 1, 2021, and Sept 30, 2022. WSIs with diagnostic labels were collected between Jan 1 and Sept 30, 2022. Our analysis showed no statistically significant differences across prediction scores from CAIMAN for typical and atypical classes based on anatomical sites of the biopsy. At 0·99 sensitivity, CAIMAN (specificity 0·5592) was more accurate than an IDaRS-based weakly supervised WSI-classification pipeline (0·4629) in identifying typical and atypical biopsies on cross-validation in the internal development cohort (p<0·0001). At 0·99 sensitivity, CAIMAN was also more accurate than IDaRS for two external validation cohorts (p<0·0001), but not for a third external validation cohort (p=0·10). CAIMAN provided higher specificity than IDaRS at some high-sensitivity thresholds (0·7763 vs 0·6222 for 0·95 sensitivity, 0·7126 vs 0·5407 for 0·97 sensitivity, and 0·5615 vs 0·3970 for 0·99 sensitivity on one of the external validation cohorts) and showed high classification performance in distinguishing between neoplastic biopsies (AUROC 0·9928, 95% CI 0·9927-0·9929), inflammatory biopsies (0·9658, 0·9655-0·9661), and atypical biopsies (0·9789, 0·9786-0·9792). On the three external validation cohorts, CAIMAN had AUROC values of 0·9431 (95% CI 0·9165-0·9697), 0·9576 (0·9568-0·9584), and 0·9636 (0·9615-0·9657) for the detection of atypical biopsies. Saliency maps supported the representation of disease heterogeneity in model predictions and its association with relevant histological features.CAIMAN, with its high sensitivity in detecting atypical large-bowel biopsies, might be a promising improvement in clinical workflow efficiency and diagnostic decision making in prescreening of typical colorectal biopsies.The Pathology Image Data Lake for Analytics, Knowledge and Education Centre of Excellence; the UK Government's Industrial Strategy Challenge Fund; and Innovate UK on behalf of UK Research and Innovation.
Distant metastasis is the major cause of death in colorectal cancer (CRC). Patients at high risk of developing distant metastasis could benefit from appropriate adjuvant and follow-up treatments if stratified accurately at an early stage of the disease. Studies have increasingly recognized the role of diverse cellular components within the tumor microenvironment in the development and progression of CRC tumors. In this paper, we show that a new method of automated analysis of digitized images from colorectal cancer tissue slides can provide important estimates of distant metastasis-free survival (DMFS, the time before metastasis is first observed) on the basis of details of the microenvironment. Specifically, we determine what cell types are found in the vicinity of other cell types, and in what numbers, rather than concentrating exclusively on the cancerous cells. We then extract novel tissue phenotypic signatures using statistical measurements about tissue composition. Such signatures can underpin clinical decisions about the advisability of various types of adjuvant therapy.
Abstract Urine cytology is a test for the detection of high‐grade bladder cancer. In clinical practice, the pathologist would manually scan the sample under the microscope to locate atypical and malignant cells. They would assess the morphology of these cells to make a diagnosis. Accurate identification of atypical and malignant cells in urine cytology is a challenging task and is an essential part of identifying different diagnosis with low‐risk and high‐risk malignancy. Computer‐assisted identification of malignancy in urine cytology can be complementary to the clinicians for treatment management and in providing advice for carrying out further tests. In this study, we presented a method for identifying atypical and malignant cells followed by their profiling to predict the risk of diagnosis automatically. For cell detection and classification, we employed two different deep learning‐based approaches. Based on the best performing network predictions at the cell level, we identified low‐risk and high‐risk cases using the count of atypical cells and the total count of atypical and malignant cells. The area under the receiver operating characteristic (ROC) curve shows that a total count of atypical and malignant cells is comparably better at diagnosis as compared to the count of malignant cells only. We obtained area under the ROC curve with the count of malignant cells and the total count of atypical and malignant cells as 0.81 and 0.83, respectively. Our experiments also demonstrate that the digital risk could be a better predictor of the final histopathology‐based diagnosis. We also analyzed the variability in annotations at both cell and whole slide image level and also explored the possible inherent rationales behind this variability.
Objective To develop an interpretable artificial intelligence algorithm to rule out normal large bowel endoscopic biopsies, saving pathologist resources and helping with early diagnosis. Design A graph neural network was developed incorporating pathologist domain knowledge to classify 6591 whole-slides images (WSIs) of endoscopic large bowel biopsies from 3291 patients (approximately 54% female, 46% male) as normal or abnormal (non-neoplastic and neoplastic) using clinically driven interpretable features. One UK National Health Service (NHS) site was used for model training and internal validation. External validation was conducted on data from two other NHS sites and one Portuguese site. Results Model training and internal validation were performed on 5054 WSIs of 2080 patients resulting in an area under the curve-receiver operating characteristic (AUC-ROC) of 0.98 (SD=0.004) and AUC-precision-recall (PR) of 0.98 (SD=0.003). The performance of the model, named Interpretable Gland-Graphs using a Neural Aggregator (IGUANA), was consistent in testing over 1537 WSIs of 1211 patients from three independent external datasets with mean AUC-ROC=0.97 (SD=0.007) and AUC-PR=0.97 (SD=0.005). At a high sensitivity threshold of 99%, the proposed model can reduce the number of normal slides to be reviewed by a pathologist by approximately 55%. IGUANA also provides an explainable output highlighting potential abnormalities in a WSI in the form of a heatmap as well as numerical values associating the model prediction with various histological features. Conclusion The model achieved consistently high accuracy showing its potential in optimising increasingly scarce pathologist resources. Explainable predictions can guide pathologists in their diagnostic decision-making and help boost their confidence in the algorithm, paving the way for its future clinical adoption.