The avalanche mechanism has been used to relate Efimov trimer states to certain enhanced atom loss features observed in ultracold-atom-gas experiments. These atom loss features are argued to be a signature of resonant atom-molecule scattering that occurs when an Efimov trimer is degenerate with the atom-molecule scattering threshold. However, observation of these atom loss features has yet to be combined with the direct observation of atom-molecule resonant scattering for any particular atomic species. In addition, recent Monte Carlo simulations were unable to reproduce a narrow loss feature. We experimentally search for enhanced atom loss features near an established scattering resonance between $^{40}\mathrm{K}$ $^{87}\mathrm{Rb}$ Feshbach molecules and $^{87}\mathrm{Rb}$ atoms. Our measurements of both the three-body recombination rate in a gas of $^{40}\mathrm{K}$ and $^{87}\mathrm{Rb}$ atoms and the ratio of the number loss for the two species do not show any broad loss feature and are therefore inconsistent with theoretical predictions that use the avalanche mechanism.
L’obtention en laboratoire de gaz moléculaires à des températures proches du zéro absolu permet d’étudier des réactions chimiques comme elles ne l’ont jamais été auparavant.Dans cet article, nous présentons un aperçu de certaines des techniques impliquées dans la création, le contrôle et la compréhension des molécules ultrafroides; nous décrivons aussi la première série d’expériences qui démontrent l’existence de collisions moléculaires et de réactions chimiques ultrafroides, dans un régime où elles doivent être décrites en termes de fonctions d’ondes quantiques.
The nature of the normal state of an ultracold Fermi gas in the BCS-BEC crossover regime is an intriguing and controversial topic. While the many-body ground state remains a condensate of paired fermions, the normal state must evolve from a Fermi liquid to a Bose gas of molecules as a function of the interaction strength. How this occurs is still largely unknown. We explore this question with measurements of the distribution of single-particle energies and momenta in a nearly homogeneous gas above ${T}_{c}$. The data fit well to a function that includes a narrow, positively dispersing peak that corresponds to quasiparticles and an ``incoherent background'' that can accommodate broad, asymmetric line shapes. We find that the quasiparticle's spectral weight vanishes abruptly as the strength of interactions is modified, which signals the breakdown of a Fermi liquid description. Such a sharp feature is surprising in a crossover.