The Earth Observing One (EO-1) satellite was launched in November 2000 as a one year technology demonstration mission for a variety of space technologies. After the first year, it was used as a pathfinder for the creation of SensorWebs. A SensorWeb is the integration of a variety of space, airborne and ground sensors into a loosely coupled collaborative sensor system that automatically provides useful data products. Typically, a SensorWeb is comprised of heterogeneous sensors tied together with an open messaging architecture and web services. SensorWebs provide easier access to sensor data, automated data product production and rapid data product delivery. Disasters are the perfect arena to test SensorWeb functionality since emergency workers and managers need easy and rapid access to satellite, airborne and in-situ sensor data as decision support tools. The Namibia Early Flood Warning SensorWeb pilot project was established to experiment with various aspects of sensor interoperability and SensorWeb functionality. The SensorWeb system features EO-1 data along with other data sets from such satellites as Radarsat, Terra and Aqua. Finally, the SensorWeb team began to examine how to measure economic impact of SensorWeb technology infusion. This paper describes the architecture and software components that were developed along with performance improvements that were experienced. Also, problems and challenges that were encountered are described along with a vision for future enhancements to mitigate some of the problems.
Features: Hardware: a) Xilinx Virtex-5 (GSFC Space Cube 2); b) 2 x 400MHz PPC; c) 100MHz Bus; d) 2 x 512MB SDRAM; e) Dual Gigabit Ethernet. Support Linux kernel 2.6.31 (gcc version 4.2.2). Support software running in stand alone mode for better performance. Can stream raw data up to 800 Mbps. Ready for operations. Software Application Examples: Band-stripping Algiotrhmsl:cloud, sulfur, flood, thermal, SWIL, NDVI, NDWI, SIWI, oil spills, algae blooms, etc. Corrections: geometric, radiometric, atmospheric. Core Flight System/dynamic software bus. CCSDS File Delivery Protocol. Delay Tolerant Network. CASPER /onboard planning. Fault monitoring/recovery software. S/C command and telemetry software. Data compression. Sensor Web for Autonomous Mission Operations.
This paper describes work being performed under a NASA Earth Science Technology Office grant to develop a modular Sensor Web architecture based on Open Geospatial Consortium (OGC) standards, which enables discovery and generic tasking capability for sensors, both space-based and insitu. A series of increasingly complex demonstrations have been developed to prototype this architecture. Recent demonstrations have made use of the Hyperion and Advanced Land Imager instruments on the Earth Observing 1 (EO-1) satellite, the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua, the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) on the Terra satellite and the Wildfire sensor on the Ikhana Unmanned Aerial System (UAS). This Sensor Web was used in the recent Southern California fires during October 2007 to deliver key wildfire imagery to the San Diego county Emergency Operations Center (EOC) to assist emergency workers with situational awareness. Presently the team is in the process of prototyping the use of this sensor web for floods in collaboration with the International Federations of the Red Cross/Red Crescent for better flood disaster management. The paper will also describe a general overview of the modular architecture that has thus far been built and capabilities still needed to realize the full vision.
The Graphical Spacecraft Monitoring System (GSMS) processes and translates real-time telemetry data from the Gamma Ray Observatory (GRO) spacecraft into high resolution 2-D and 3-D color displays showing the spacecraft's position relative to the Sun, Earth, Moon, and stars, its predicted orbit path, its attitude, instrument field of views, and other items of interest to the GRO Flight Operations Team (FOT). The GSMS development project is described and the approach being undertaken for implementing Space Views, the next version of GSMS, is presented. Space Views is an object-oriented graphical spacecraft monitoring system that will become a standard component of Goddard Space Flight Center's Transportable Payload Operations Control Center (TPOCC).
The proposed HyspIRI mission is evaluating a X-band Direct Broadcast capability that would enable data to be delivered to ground stations virtually as it is acquired. However the HyspIRI VSWIR and TIR instruments are expected to produce over 800 × 10 6 bits per second of data while the Direct Broadcast capability is approximately 10 × 10 6 bits per second for a ~ 80x oversubscription. In order to address this data throughput mismatch a Direct Broadcast concept called the Intelligent Payload Module (IPM) has been developed to determine which data to downlink based on both the type of surface the spacecraft is overlying and onboard processing of the data to detect events. For example, when the spacecraft is overlying polar regions it might downlink a snow/ice product. Additionally the onboard software would search for thermal signatures indicative of a volcanic event or wild fire and downlink summary information (extent, spectra) when detected. Earth Observing One (EO-1) has served as a test bed and pathfinder for this type of onboard product generation. As part of the Autonomous Sciencecraft (ASE), EO-1 implemented in ίight software the ability to analyze and develop products for a limited swath of the Hyperion hyperspectral instrument onboard the spacecraft. In a series of technology demonstrations that became part of the operational EO-1 system over 5000 science products have been generated onboard EO-1 and down linked via engineering S-band contacts, a routine automated process that continues to this day. We describe the onboard products demonstrated in EO-1 operations and show how they have paved the way for the HyspIRI Intelligent Payload Module concept.
The Transportable Payload Operations Control Center (TPOCC), an architecture for control centers which makes use of new mission operations and reduces development costs, is described. The TPOCC architecture takes an open networking approach based on widely accepted industry standards. Small inexpensive computers are networked together, performing the functions of a mini or mainframe computer. This approach, along with TPOCC's reusable components, provides versatile ground support systems for Mission Operations Division's (MOD) customers.
Data products derived from Earth observing satellites are difficult to find and share without specialized software and often times a highly paid and specialized staff. For our research effort, we endeavored to prototype a distributed architecture that depends on a standardized communication protocol and applications program interface (API) that makes it easy for anyone to discover and access disaster related data. Providers can easily supply the public with their disaster related products by building an adapter for our API. Users can use the API to browse and find products that relate to the disaster at hand, without a centralized catalogue, for example floods, and then are able to share that data via social media. Furthermore, a longerterm goal for this architecture is to enable other users who see the shared disaster product to be able to generate the same product for other areas of interest via simple point and click actions on the API on their mobile device. Furthermore, the user will be able to edit the data with on the ground local observations and return the updated information to the original repository of this information if configured for this function. This architecture leverages SensorWeb functionality [1] presented at previous IGARSS conferences. The architecture is divided into two pieces, the frontend, which is the GeoSocial API, and the backend, which is a standardized disaster node that knows how to talk to other disaster nodes, and also can communicate with the GeoSocial API. The GeoSocial API, along with the disaster node basic functionality enables crowdsourcing and thus can leverage insitu observations by people external to a group to perform tasks such as improving water reference maps, which are maps of existing water before floods. This can lower the cost of generating precision water maps. Keywords-Data Discovery, Disaster Decision Support, Disaster Management, Interoperability, CEOS WGISS Disaster Architecture
This paper describes the work being performed under a NASA Earth Science Technology Office (ESTO) Advanced Information System Technology (AIST) grant to develop a modular sensor web architecture which enables discovery and generic tasking capability for sensors, both space-based and in-situ. This effort seeks to demonstrate methods to facilitate interoperability and ease of use of a diverse set of sensors by hiding the details required to obtain sensor data, process the science data and deliver the science products. In particular, Web 2.0 and open geospatial consortium (OGC) Sensor Web Enablement (SWE) standard services are used. Thus, these capabilities serve to facilitate a user-centric approach to Global Earth Observing System of Systems (GEOSS). This work builds on previous sensor web efforts conducted at NASA/GSFC using the Earth Observing 1 (EO-1) and other satellites.
This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.
This paper describes the work being managed by the NASA Goddard Space Flight Center (GSFC) Information System Division (ISD) under a NASA Earth Science Technology Office (ESTO) Advanced Information System Technology (AIST) grant to develop a modular sensor web architecture which enables discovery of sensors and workflows that can create customized science via a high-level service-oriented architecture based on Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) web service standards. These capabilities serve as a prototype to a user-centric architecture for Global Earth Observing System of Systems (GEOSS). This work builds and extends previous sensor web efforts conducted at NASA/GSFC using the Earth Observing 1 (EO-1) satellite and other low-earth orbiting satellites.