An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
The elimination of the A' unit from -type Y6-derivatives has led to the development of a new class of ortho-benzodipyrrole (o-BDP)-based A-DNBND-A-type NFAs. In this work, two new A-DNBND-A-type NFAs, denoted as CFB and CMB, are designed and synthesized, where electron-withdrawing fluorine atoms and electron-donating methyl groups are substituted on the benzene ring of the o-BDP moiety, respectively. CFB exhibits a blue-shifted absorption spectrum, stronger intermolecular interactions, shorter π-π stacking distances, and more ordered 3D intermolecular packing in the neat and blend films, enabling it to effectively suppress charge recombination in the PM6:CFB device showing a higher PCE of 16.55% with an FF of 77.45%. CMB displays a higher HOMO/LUMO energy level, a smaller optical bandgap, and a less ordered 3D packing, which contributes to its superior ability to suppress energy loss in the PM6:CMB device with a high V oc of 0.90 V and a PCE of 16.46%. To leverage the advantages of CFB and CMB, ternary PM6:Y6-16:CFB and PM6:Y6-16:CMB devices are fabricated. The PM6:Y6-16:CFB device exhibits the highest PCE of 17.83% with an increased V oc of 0.86 V and a J sc of 27.32 mA cm-2, while the PM6:Y6-16:CMB device displayed an elevated V oc of 0.87 V and an improved FF of 74.71%, leading to a PCE of 17.44%. The high PCE was achieved using the non-halogenated greener solvent o-xylene, highlighting their potential for facilitating more eco-friendly processing procedures. C-shaped disubstituted o-BDP-based A-D-A type acceptors open up new avenues for tailoring electronic properties and molecular self-assembly, achieving higher OPV performance with enhanced charge recombination suppression and reduced energy loss.
The high-performance Y6-based nonfullerene acceptors (NFAs) feature a C-shaped A-DA'D-A-type molecular architecture with a central electron-deficient thiadiazole (Tz) A' unit. In this work, we designed and synthesized a new A-D-A-type NFA, termed CB16, having a C-shaped ortho-benzodipyrrole-based skeleton of Y6 but with the Tz unit eliminated. When processed with nonhalogenated xylene without using any additives, the binary PM6:CB16 devices display a remarkable power conversion efficiency (PCE) of 18.32% with a high open-circuit voltage (Voc) of 0.92 V, surpassing the performance of the corresponding Y6-based devices. In contrast, similarly synthesized SB16, featuring an S-shaped para-benzodipyrrole-based skeleton, yields a low PCE of 0.15% due to the strong side-chain aggregation of SB16. The C-shaped A-DNBND-A skeleton in CB16 and the Y6-series NFAs constitutes the essential structural foundation for achieving exceptional device performance. The central Tz moiety or other A' units can be employed to finely adjust intermolecular interactions. The single-crystal X-ray structure reveals that ortho-benzodipyrrole-embedded A-DNBND-A plays an important role in the formation of a 3D elliptical network packing for efficient charge transport. Solution structures of the PM6:NFAs detected by small- and wide-angle X-ray scattering (SWAXS) indicate that removing the Tz unit in the C-shaped skeleton could reduce the self-packing of CB16, thereby enhancing the complexing and networking with PM6 in the spin-coating solution and the subsequent device film. Elucidating the structure–property–performance relationships of A-DA'D-A-type NFAs in this work paves the way for the future development of structurally simplified A-D-A-type NFAs.