ABSTRACT (1) Soil alkalinization and salinization represent a growing global challenge. Maize ( Zea mays L.), with its relatively low tolerance to salt and alkali, is increasingly vulnerable to saline‐alkali stress. Identifying maize genotypes that can withstand salinity and alkalinity is crucial to broaden the base of salt‐alkali‐tolerant maize germplasm. (2) In this study, we screened 65 maize germplasm resources for alkali stress using a 60 mM NaHCO 3 solution. We measured fifteen morphological and physiological indices, including seedling height, stem thickness, and leaf area. Various analytical methods—correlation analysis, principal component analysis, subordinate function analysis, cluster analysis, stepwise discriminant analysis, and ridge regression analysis—were used to assess the seedling alkali tolerance of these maize germplasm resources. The physiological indices of six tested maize varieties were analyzed in greater detail. (3) The findings revealed complex correlations among traits, particularly strong negative associations between conductivity and root traits such as length, volume, surface area, diameter, and number of branches. The 15 evaluation indices were reduced to 7 principal components, explaining 77.89% of the variance. By applying affiliation functions and weights, we derived a comprehensive evaluation of maize seedling alkali tolerance. Notably, three germplasms—Liang Yu 99, Bi Xiang 638, and Gan Xin 2818—demonstrated significant comprehensive seedling alkali tolerance. Cluster analysis grouped the 65 maize germplasm resources into four distinct categories (I, II, III, and IV). The results of the cluster analysis were confirmed by multiclass stepwise discriminant analysis, which achieved a correct classification rate of 92.3% for 60 maize genotypes regarding alkalinity tolerance. Using principal component and ridge regression analyses, we formulated a regression equation for alkali tolerance: D ‐value = −1.369 + 0.002 * relative root volume + 0.003 * relative number of root forks + 0.006 * relative chlorophyll SPAD + 0.005 * relative stem thickness + 0.005 * relative plant height + 0.001 * relative conductivity + 0.002 * relative dry weight of underground parts. Under sodium bicarbonate stress, morphological indices and germination rates were significantly reduced, germination was inhibited, photosynthetic pigment levels in maize leaves decreased to varying degrees, and the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) significantly increased. Alkali stress markedly enhanced the antioxidant enzyme activities in maize varieties, with alkali‐resistant varieties exhibiting a greater increase in antioxidant enzyme activities than alkali‐sensitive varieties under such stress. (4) By screening for alkali tolerance in maize seedlings, the identified alkali‐tolerant genotypes can be further utilized as suitable donor parents, thereby enhancing the use of alkali‐tolerant germplasm resources and providing theoretical guidance for maize cultivation in saline‐alkaline environments.
To better understand the growth adaptability of various maize varieties to the climate of the Alar region in Southern Xinjiang Province, an experiment was conducted using seven distinct maize varieties as test materials. A one-way randomized block design was applied to both experimental groups. In 2021 and 2022, a total of 19 indicators were observed for comparative analysis, including antioxidant enzyme activities and agronomic traits. Principal component analysis and cluster analysis were used to evaluate the adaptability of the maize varieties. The findings revealed that: (1) All seven maize varieties exhibited robust growth, with notable differences in their respective trait profiles. Specifically, the yield traits of Jin’ai 588 and Denghai 3672 showed relatively consistent performance over the two-year period. (2) Five principal components (100-kernel weight, bald tip length, catalase (CAT), number of leaves, and angle of leaf pinch at the ear) were extracted from the 19 traits via principal component analysis, with a cumulative contribution rate of 84.689%. This represented the majority of the information regarding the seven maize varieties. After calculating the comprehensive index F value, the results indicated that Xinyu 66 and Denghai 3672 had high composite scores, suggesting high production potential and suitability for cultivation in this region. Conversely, Xinyu 24 showed the lowest composite score, indicating that it is not suitable for planting in this area. (3) Ultimately, the seven maize varieties were categorized into three groups through cluster analysis; this is the same as the result of principal component analysis. This classification provides a reference for the promotion and utilization of different varieties in the southern border region and aims to optimize the comprehensive trait selection of the varieties studied.