Objective. In this paper, an automated stable tidal breathing period (STBP) identification method based on processing electrical impedance tomography (EIT) waveforms is proposed and the possibility of detecting and identifying such periods using EIT waveforms is analyzed. In wearable chest EIT, patients breathe spontaneously, and therefore, their breathing pattern might not be stable. Since most of the EIT feature extraction methods are applied to STBPs, this renders their automatic identification of central importance.Approach. The EIT frame sequence is reconstructed from the raw EIT recordings and the raw global impedance waveform (GIW) is computed. Next, the respiratory component of the raw GIW is extracted and processed for the automatic respiratory cycle (breath) extraction and their subsequent grouping into STBPs.Main results. We suggest three criteria for the identification of STBPs, namely, the coefficient of variation of (i) breath tidal volume, (ii) breath duration and (iii) end-expiratory impedance. The total number of true STBPs identified by the proposed method was 294 out of 318 identified by the expert corresponding to accuracy over 90%. Specific activities such as speaking, eating and arm elevation are identified as sources of false positives and their discrimination is discussed.Significance. Simple and computationally efficient STBP detection and identification is a highly desirable component in the EIT processing pipeline. Our study implies that it is feasible, however, the determination of its limits is necessary in order to consider the implementation of more advanced and computationally demanding approaches such as deep learning and fusion with data from other wearable sensors such as accelerometers and microphones.
Respiratory diseases are among the most significant causes of morbidity and mortality worldwide, causing substantial strain on society and health systems. Over the last few decades, there has been increasing interest in the automatic analysis of respiratory sounds and electrical impedance tomography (EIT). Nevertheless, no publicly available databases with both respiratory sound and EIT data are available.In this work, we have assembled the first open-access bimodal database focusing on the differential diagnosis of respiratory diseases (BRACETS: Bimodal Repository of Auscultation Coupled with Electrical Impedance Thoracic Signals). It includes simultaneous recordings of single and multi-channel respiratory sounds and EIT. Furthermore, we have proposed several machine learning-based baseline systems for automatically classifying respiratory diseases in six distinct evaluation tasks using respiratory sound and EIT (A1, A2, A3, B1, B2, B3). These tasks included classifying respiratory diseases at sample and subject levels. The performance of the classification models was evaluated using a 5-fold cross-validation scheme (with subject isolation between folds).The resulting database consists of 1097 respiratory sounds and 795 EIT recordings acquired from 78 adult subjects in two countries (Portugal and Greece). In the task of automatically classifying respiratory diseases, the baseline classification models have achieved the following average balanced accuracy: Task A1 - 77.9±13.1%; Task A2 - 51.6±9.7%; Task A3 - 38.6±13.1%; Task B1 - 90.0±22.4%; Task B2 - 61.4±11.8%; Task B3 - 50.8±10.6%.The creation of this database and its public release will aid the research community in developing automated methodologies to assess and monitor respiratory function, and it might serve as a benchmark in the field of digital medicine for managing respiratory diseases. Moreover, it could pave the way for creating multi-modal robust approaches for that same purpose.
Electrical impedance tomography (EIT) is a noninvasive imaging modality that allows a continuous assessment of changes in regional bioimpedance of different organs. One of its most common biomedical applications is monitoring regional ventilation distribution in critically ill patients treated in intensive care units. In this work, we put forward a proof-of-principle study that demonstrates how one can reconstruct synchronously measured respiratory or circulatory parameters from the EIT image sequence using a deep learning model trained in an end-to-end fashion. For this purpose, we devise an architecture with a convolutional feature extractor whose output is processed by a recurrent neural network. We demonstrate that one can accurately infer absolute volume, absolute flow, normalized airway pressure and within certain limitations even the normalized arterial blood pressure from the EIT signal alone, in a way that generalizes to unseen patients without prior calibration. As an outlook with direct clinical relevance, we furthermore demonstrate the feasibility of reconstructing the absolute transpulmonary pressure from a combination of EIT and absolute airway pressure, as a way to potentially replace the invasive measurement of esophageal pressure. With these results, we hope to stimulate further studies building on the framework put forward in this work.
Objective: We aim to provide an algorithm for the detection of myocardial infarction that operates directly on ECG data without any preprocessing and to investigate its decision criteria. Approach: We train an ensemble of fully convolutional neural networks on the PTB ECG dataset and apply state-of-the-art attribution methods. Main results: Our classifier reaches 93.3% sensitivity and 89.7% specificity evaluated using 10-fold cross-validation with sampling based on patients. The presented method outperforms state-of-the-art approaches and reaches the performance level of human cardiologists for detection of myocardial infarction. We are able to discriminate channel-specific regions that contribute most significantly to the neural network's decision. Interestingly, the network's decision is influenced by signs also recognized by human cardiologists as indicative of myocardial infarction. Significance: Our results demonstrate the high prospects of algorithmic ECG analysis for future clinical applications considering both its quantitative performance as well as the possibility of assessing decision criteria on a per-example basis, which enhances the comprehensibility of the approach.
Abstract Objective. Current wearable respiratory monitoring devices provide a basic assessment of the breathing pattern of the examined subjects. More complex monitoring is needed for healthcare applications in patients with lung diseases. A multi-sensor vest allowing continuous lung imaging by electrical impedance tomography (EIT) and auscultation at six chest locations was developed for such advanced application. The aims of our study were to determine the vest’s capacity to record the intended bio-signals, its safety and the comfort of wearing in a first clinical investigation in healthy adult subjects. Approach. Twenty subjects (age range: 23–65 years) were studied while wearing the vests during a 14-step study protocol comprising phases of quiet and deep breathing, slow and forced full expiration manoeuvres, coughing, breath-holding in seated and three horizontal postures. EIT, chest sound and accelerometer signals were streamed to a tablet using a dedicated application and uploaded to a back-end server. The subjects filled in a questionnaire on the vest properties using a Likert scale. Main results. All subjects completed the full protocol. Good to excellent EIT waveforms and functional EIT images were obtained in 89% of the subjects. Breathing pattern and posture dependent changes in ventilation distribution were properly detected by EIT. Chest sounds were recorded in all subjects. Detection of audible heart sounds was feasible in 44%–67% of the subjects, depending on the sensor location. Accelerometry correctly identified the posture in all subjects. The vests were safe and their properties positively rated, thermal and tactile properties achieved the highest scores. Significance. The functionality and safety of the studied wearable multi-sensor vest and the high level of its acceptance by the study participants were confirmed. Availability of personalized vests might further advance its performance by improving the sensor-skin contact.
Electrical impedance tomography (EIT) is a noninvasive imaging modality that allows a continuous assessment of changes in regional bioimpedance of different organs. One of its most common biomedical applications is monitoring regional ventilation distribution in critically ill patients treated in intensive care units. In this work, we put forward a proof-of-principle study that demonstrates how one can reconstruct synchronously measured respiratory or circulatory parameters from the EIT image sequence using a deep learning model trained in an end-to-end fashion. We demonstrate that one can accurately infer absolute volume, absolute flow, normalized airway pressure and within certain limitations even the normalized arterial blood pressure from the EIT signal alone, in a way that generalizes to unseen patients without prior calibration. As an outlook with direct clinical relevance, we furthermore demonstrate the feasibility of reconstructing the absolute transpulmonary pressure from a combination of EIT and absolute airway pressure, as a way to potentially replace the invasive measurement of esophageal pressure. With these results, we hope to stimulate further studies building on the framework put forward in this work.
Patients suffering from pulmonary diseases typically exhibit pathological lung ventilation in terms of homogeneity. Electrical Impedance Tomography (EIT) is a non- invasive imaging method that allows to analyze and quantify the distribution of ventilation in the lungs. In this article, we present a new approach to promote the use of EIT data and the implementation of new clinical applications for differential diagnosis, with the development of several machine learning models to discriminate between EIT data from healthy and nonhealthy subjects. EIT data from 16 subjects were acquired: 5 healthy and 11 non-healthy subjects (with multiple pulmonary conditions). Preliminary results have shown accuracy percentages of 66% in challenging evaluation scenarios. The results suggest that the pairing of EIT feature engineering methods with machine learning methods could be further explored and applied in the diagnostic and monitoring of patients suffering from lung diseases. Also, we introduce the use of a new feature in the context of EIT data analysis (Impedance Curve Correlation).