Transfusion-transmitted infectious agents are amongst the major health burden worldwide. The purpose of this study was to evaluate the prevalence of hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV) among blood donors in Samtah General Hospital, Jazan region, Saudi Arabia.In this retrospective study, blood donation records of all blood donors recruited between January 2019 and August 2020 were included for data acquisition. A total of 4977 blood donors' records were reviewed and data were analysed.Hepatitis B profile showed 0.60% blood donors positive for hepatis B surface antigen (HBsAg). Nucleic acid testing (NAT) showed the presence of HBV-DNA in 0.4% of the blood donors. Anti-HBs and anti-HBc antibodies were reactive in 3.34% and 7.31% blood donors' units, respectively. Anti-HCV antibodies were reactive among 54 (1.09%) blood donors. Upon reviewing the NAT analysis results, 0.16% (08) blood donors showed the presence of HCV-RNA in their blood units. Anti-HIV antibodies were reactive in 8 (0.16%) blood donors.It is concluded that the frequency of HBsAg is comparatively lower while anti-HCV positivity is higher in Samtah, Jazan as a region compared to other regions of the country. Further studies are warranted to evaluate the cause of HCV infection in this area. Frequency of HIV is uncommon in this area.
Abstract This study investigated the polymorphism in the P. falciparum chloroquine resistance transporter ( pfcrt ) gene 11 years after chloroquine (CQ) cessation in Jazan region, southwestern Saudi Arabia. Two hundred and thirty-five P. falciparum isolates were amplified to detect mutations in the pfcrt gene. The pfcrt 76 T molecular marker for CQ resistance was detected in 66.4% (156/235) of the isolates, while the K76 CQ-sensitive wild type was detected in 33.6%. The pfcrt 74 I and pfcrt 75 E point mutations were each found to be present in 56.2% of isolates, while only four isolates (1.7%) were found to carry the pfcrt 72 S mutation. Moreover, four pfcrt haplotypes were identified: the CV IET triple-allele (56.2%), S VME T double-allele (1.7%), and CVMN T single-allele (8.5%) mutant haplotypes, and the CVMNK wild haplotype (33.6%). The analysis also revealed significant associations between the prevalence of mutant pfcrt alleles and haplotypes and the age group, governorate, and nationality of the patients as well as the parasitaemia level ( P < 0.05). The findings provide evidence of the potential re-emergence of CQ-susceptible P. falciparum strains in Jazan region over a decade after CQ discontinuation, with about one third of the isolates analysed carrying the pfcrt K76 CQ-sensitive wild allele and the CVMNK ancestral wild haplotype. Although the reintroduction of CQ cannot be recommended at present in Saudi Arabia, these findings support the rationale for a potential future role for CQ in malaria treatment. Therefore, continuous molecular and in-vitro monitoring mutations of pfcrt polymorphism in Jazan region is highly recommended.
Deep Vein Thrombosis (DVT) is a multicausal disease involving both acquired as well as genetic factors. Nitric oxide is an influential endogenous factor having its role in the development of deep vein thrombosis. It maintains the vascular integrity and any alterations in its levels may lead to a thrombotic event. It may also modulate homocysteine metabolism to cause hyperhomocysteinemia, which is a prominent risk factor for thrombosis. The objective of the study was to study if endothelial nitric oxide gene polymorphisms, 894G/T, and 2479G/A alter the plasma nitric oxide and homocysteine levels which may eventually increase the risk of deep vein thrombosis.One hundred Doppler ultrasonography and computerized tomography confirmed (for cerebral venous thrombosis), non-related DVT patients (M:F = 58:42; age range = 18 to 61 years) served as the study population. Two hundred hospital staff and their relatives or unrelated attendants of the patients served as the controls. Nitric oxide levels were determined by measuring its metabolites (NOx), and EIA was used to measure homocysteine levels. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for detecting the eNOS polymorphisms 894G/T and 2479G/A.In total, DVT subjects have 25% higher plasma levels of homocysteine and 37% lower levels of NOx in their circulation when compared to controls. In tertile analysis of nitric oxide and homocysteine levels, 894G/T and 2479G/A polymorphisms were associated with plasma nitric oxide and homocysteine levels. The increased risk of deep vein thrombosis was associated with endothelial nitric oxide gene polymorphisms and nitric oxide levels, but homocysteine levels were not a risk for deep vein thrombosis.The present study demonstrates that 894G/T and 2479G/A polymorphisms interact with lower levels of nitric oxide and higher levels of homocysteine that may possess the risk of deep vein thrombosis.
Artemisia judaica, Ruta graveolens, and Suaeda monoica, indigenous plants to Jazan, second smallest region of Saudi Arabia, have several uses in the local folk medicine. This research aims to study the chemical composition of their methanol extracts and to explore some related biological activities. The different extracts Gas Chromatography Mass Spectroscopy profiling revealed the occurrence of many compounds within these extracts. Besides, this study revealed varied and selective antibacterial activities of these extracts. Ruta graveolens methanol extract was effective in inhibiting the growth of all tested microorganisms. Furthermore, they exhibit an interesting cytotoxic effect on human breast cancer cell lines, especially Artemisia judaica methanol extract. These findings suggested that Artemisia judaica (Asteraceae), Ruta graveolens (Rutaceae), and Suaeda monoica (Chenopodiaceae) could be natural sources for the discovery of new drugs.
Antithrombin is an essential protein that acts as a natural anticoagulant in the human body. It is synthesized by the liver and belongs to the serine protease inhibitors, which are commonly referred to as the SERPINS superfamily. The antithrombin molecule comprises 432 amino acids and has a molecular weight of approximately 58 200 D. It consists of three domains, including an amino-terminal domain, a carbohydrate-rich domain, and a carboxyl-terminal domain. The amino-terminal domain binds with heparin, whereas the carboxyl-terminal domain binds with serine protease. Antithrombin is a crucial natural anticoagulant that contributes approximately 60–80% of plasma anticoagulant activities in the human body. Moreover, antithrombin has anti-inflammatory effects that can be divided into coagulation-dependent and coagulation-independent effects. Furthermore, it exhibits antitumor activity and possesses a broad range of antiviral properties. Inherited type I antithrombin deficiency is a quantitative disorder that is characterized by low antithrombin activity due to low plasma levels. On the other hand, inherited type II antithrombin deficiency is a qualitative disorder that is characterized by defects in the antithrombin molecule. Acquired antithrombin deficiencies are more common than hereditary deficiencies and are associated with various clinical conditions due to reduced synthesis, increased loss, or enhanced consumption. The purpose of this review was to provide an update on the structure, functions, clinical implications, and methods of detection of antithrombin.
Background: The levels of procoagulant microvesicles (MVs) and tissue factor (TF)-bearing MVs may be increased in many conditions, including dengue fever (DF). This study aimed to measure the levels of MVs and TF-bearing MVs in patients with DF and matched healthy controls. Materials & methods: Levels of MVs and TF-bearing MVs in the plasma of patients with DF and matched healthy controls were measured using functional assay. Results: The patient group had significantly elevated levels of MVs (p < 0.001) and slightly increased levels of TF-bearing MVs (p = 0.454) compared with the matched healthy controls. Conclusion: Elevated levels of MVs and TF-bearing MVs could be used as biomarkers to evaluate the hemostatic function of patients with DF.
Pulmonary embolism (PE) is a life-threatening complication arising from venous thromboembolism with a difficult diagnosis and treatment and is often associated with increased mortality and morbidity. PE had a significantly low incidence prior to the COVID-19 epidemic. This condition saw a sharp surge during the COVID-19 pandemic, indicating an evident viral influence on PE’s pathophysiology in COVID-19 patients. The hypercoagulable state induced by the viral load seems to be the major contributor, and the classical causative factors seem to play a lesser role. PE in COVID-19 infection has become a mammoth challenge since the diagnosis is quite challenging due to overlapping symptoms, lack of prior-known predisposing risk factors, limited resources, and viral transmittance risk. Numerous factors arising out of the viral load or treatment lead to an increased risk for PE in COVID-19 patients, besides the fact that certain unknown risk factors may also contribute to the incidence of PE in COVID-19 patients. The management of PE in COVID-19 infection mainly comprises thromboprophylaxis and anticoagulant therapy with mechanical ventilation, depending on the risk stratification of the patient, with a post-COVID-19 management that prevents recurrent PE and complications. This review aims to discuss various aspects of COVID-19-infection-associated PE and major differential aspects from non-COVID-19 PE.
Glutathione S-transferases (GSTT1 and GSTM1) detoxify various endogenous and exogenous compounds and provide cytoprotective role against reactive species. This study aimed to assess the frequency of GSTT1, and GSTM1 polymorphisms in newly diagnosed Sudanese adult patients with acute lymphoblastic leukemia (ALL) and to evaluate the association of these polymorphisms with age, gender and type of ALL.This case-control study included 128 adult Sudanese, untreated newly diagnosed patients with ALL, aged 18 to 74 years and 128 age-gender matched healthy controls. Deletional polymorphisms of GSTT1 and GSTM1 genes were genotyped through a multiplex polymerase chain reaction (PCR) assay using β-globin gene as an internal positive control.The genotypic frequency of GSTT1 null polymorphism was 22.7% in cases and 14.8% in controls (OR = 1.68, P = 0.111). Statistically significant differences were noted in the frequencies of GSTM1 null polymorphism in cases and controls (OR = 3.7, P = <0.001). Combined GSTT1 null and GSTM1 null gene polymorphisms showed statistically significant difference in patients with ALL as compared to controls (OR = 6.5, CI 95% = 1.42-29.74, P < 0.001).Irrespective of age at diagnosis, gender, and phenotype of ALL, GSTM1 null polymorphism either alone or in combination with GSTT1 null polymorphism poses significantly increased risk of developing ALL in adults.
The hypercoagulability and thrombotic tendency in coronavirus disease 2019 (COVID-19) is multifactorial, driven mainly by inflammation, and endothelial dysfunction. Elevated levels of procoagulant microvesicles (MVs) and tissue factor-bearing microvesicles (TF-bearing MVs) have been observed in many diseases with thrombotic tendency. The current study aimed to measure the levels of procoagulant MVs and TF-bearing MVs in patients with COVID-19 and healthy controls and to correlate their levels with platelet counts, D-Dimer levels, and other proposed calculated inflammatory markers.Forty ICU-admitted patients with COVID-19 and 37 healthy controls were recruited in the study. Levels of procoagulant MVs and TF-bearing MVs in the plasma of the study population were measured using enzyme linked immunosorbent assay.COVID-19 patients had significantly elevated levels of procoagulant MVs and TF-bearing MVs as compared with healthy controls (P<0.001). Procoagulant MVs significantly correlated with TF-bearing MVs, D-dimer levels, and platelet count, but not with calculated inflammatory markers (neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, and platelet/neutrophil ratio).Elevated levels of procoagulant MVs and TF-bearing MVs in patients with COVID-19 are suggested to be (i) early potential markers to predict the severity of COVID-19 (ii) a novel circulatory biomarker to evaluate the procoagulant activity and severity of COVID-19.