Hyaluronan (HA) metabolism in skin fibroblasts is mediated by HYBID (hyaluronan binding protein involved in hyaluronan depolymerization, alias CEMIP and KIAA1199) and the HA synthases HAS1 and HAS2. However, photoageing‐dependent changes in HA and their molecular mechanisms, and the relationship between HA metabolism and clinical symptoms in photoaged skin remain elusive. We examined the amount, size and tissue distribution of HA and expression levels of HYBID, HAS1 and HAS2 in photoaged skin, and analysed their relationship with the degree of photoageing. Photoageing‐dependent changes of HA were investigated by studying skin biopsies isolated from photoprotected and photoexposed areas of the same donors, and the relationships between HA and photoageing symptoms such as skin wrinkling and sagging were examined. Skin biopsy specimens showed that the amount and size of HA are decreased in photoexposed skin compared with photoprotected skin, and this was accompanied by increased expression of HYBID and decreased expression of HAS1 and HAS2. Histologically, HA staining in the papillary dermis was decreased in photoexposed skin, showing reverse correlation with HYBID expression. HYBID expression in the photoexposed skin directly correlated with skin roughness and sagging parameters, and the reduced HA staining in the papillary dermis in the photoexposed skin positively correlated with these symptoms. These data demonstrate that imbalance between HYBID‐mediated HA degradation and HAS‐mediated HA synthesis may contribute to enhanced HA catabolism in photoaged skin, and suggest that HYBID‐mediated HA reduction in the papillary dermis is related to skin wrinkling and sagging of photoaged skin.
Recently, we disclosed that KIAA1199-mediated hyaluronan (HA) depolymerization requires an acidic cellular microenvironment (e.g. clathrin-coated vesicles or early endosomes), but no information about the structural basis underlying the cellular targeting and functional modification of KIAA1199 was available. Here, we show that the cleavage of N-terminal 30 amino acids occurs in functionally matured KIAA1199, and the deletion of the N-terminal portion results in altered intracellular trafficking of the molecule and loss of cellular HA depolymerization. These results suggest that the N-terminal portion of KIAA1199 functions as a cleavable signal sequence required for proper KIAA1199 translocation and KIAA1199-mediated HA depolymerization.
Recently, we have disclosed that human KIAA1199 (hKIAA1199) is a hyaluronan (HA) binding protein implicated in HA depolymerization. Although a murine homologue (mKiaa1199) was previously cloned, no information about the function of the molecule was available. Here, we show that cells transfected with mKiaa1199 cDNA selectively catabolized HA via the clathrin-coated pit pathway. A glycosaminoglycan-binding assay demonstrated the specific binding of mKiaa1199 to HA. These results were similar to our observations with hKIAA1199, although slight differences were found in the peak sizes of the minimum degradates of HA. We conclude that like hKIAA1199, mKiaa1199 is a hyaladherin, leading to HA depolymerization.
Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients. Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients.
Hyaluronan (HA) has an extraordinarily high turnover in physiological tissues, and HA degradation is accelerated in inflammatory and neoplastic diseases. CD44 (a cell surface receptor) and two hyaluronidases (HYAL1 and HYAL2) are thought to be responsible for HA binding and degradation; however, the role of these molecules in HA catabolism remains controversial. Here we show that KIAA1199, a deafness gene of unknown function, plays a central role in HA binding and depolymerization that is independent of CD44 and HYAL enzymes. The specific binding of KIAA1199 to HA was demonstrated in glycosaminoglycan-binding assays. We found that knockdown of KIAA1199 abolished HA degradation by human skin fibroblasts and that transfection of KIAA1199 cDNA into cells conferred the ability to catabolize HA in an endo-β-N-acetylglucosaminidase-dependent manner via the clathrin-coated pit pathway. Enhanced degradation of HA in synovial fibroblasts from patients with osteoarthritis or rheumatoid arthritis was correlated with increased levels of KIAA1199 expression and was abrogated by knockdown of KIAA1199. The level of KIAA1199 expression in uninflamed synovium was less than in osteoarthritic or rheumatoid synovium. These data suggest that KIAA1199 is a unique hyaladherin with a key role in HA catabolism in the dermis of the skin and arthritic synovium.
Abstract Background Hyaluronan ( HA ) is an important constituent of extracellular matrix ( ECM ) in the skin, and HA degradation mediated by HYBID ( KIAA 1199) is suggested to be implicated in facial skin wrinkling in Japanese women. Ethnic difference in skin wrinkle formation is known between Caucasian and Japanese women, but no information is available for the relations of HA and HYBID expression levels with skin wrinkling in Caucasian women. Methods The skin surface roughness at the eye corner of the Caucasian female subjects was measured, and the skin specimens biopsied from the same areas were subjected to microarray gene analysis, HA staining, and immunohistochemistry for HYBID . Results Among the ECM genes and those related to ECM metabolism, only HYBID expression levels positively correlated with the skin roughness parameters. When the skin sample groups with high expression of HYBID or low expression of HYBID were compared, the HA staining intensity and the ratio of HYBID ‐immunoreactive cells to total cells in the superficial dermis were significantly reduced and increased in the high‐ HYBID ‐expression group compared with the low‐ HYBID ‐expression group, respectively. Conclusion Our data suggest that like Japanese women, HYBID ‐mediated reduction of HA in the superficial dermis is involved in the formation of wrinkles in Caucasian women.