Nesidiocoris tenuis (Reuter) is a zoophytophagous mirid which is considered both as a significant natural enemy and an important pest of crops. The complete mitochondrial genome (mitogenome) of N. tenuis was determined using long PCR and a primer walking sequencing strategy. The genome is 17, 544 bp in length and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA genes (lrRNA and srRNA), and a duplicate control region. The gene order of this newly sequenced genome is identical with the ground plan of insects. The nucleotide composition is biased toward adenine and thymine with a high AT content (75.0%). The most frequent codons are ATA, TTA, TTT, and ATT. All the PCGs initiate with the standard start codon ATN. All tRNAs have the classic cloverleaf structures, with the exception of tRNASer(UCG), which lacks the dihydrouridine (DHU) arm. Secondary structures of the two ribosomal RNAs were shown referring to previous models. Variable numbers of tandem repeats were detected in the control region. The phylogenetic analyses shows that N. tenuis is the sister group to Lygus lineolaris (Palisot de Beauvois).
The nearly complete mitochondrial genome of Coridius chinensis (Dallas) is reported in this study. The mitogenome is a double-stranded circular molecule of more than 14,648 bp in length with an A+T content of 75.1%. It encoded 37 genes as in other insect mtDNAs, including 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and a control region (unsuccessful sequencing), and the gene order is the same as most other known heteropteran mitogenomes. All of the 22 transfer RNAs can be folded into the typical cloverleaf structure except tRNASer(AGN), which can only form a simple loop at the site of dihydrouridine (DHU) arm as known in other metazoans. The secondary structures of the large and small ribosomal RNAs of C. chinensis are similar to other presented insects. The rrnL consisted of six structural domains and 40 helices, and the rrnS consisted of three structural domains and 26 helices. Nine PCGs are initiated with the standard initiation codons (ATN), while ND6 and ND1 use GTG, and COI and ATP8 use TTG. All PCGs stopped with TAA/TAG termination codons except the COII terminated with a single T residue. Asymmetry in the nucleotide composition between J-strand and N-strand was observed in this mitogenome.
Atrial fibrillation (AF) coexisting with coronary artery disease (CAD) remains a prevailing issue that often results in poor short- and long-term patient outcomes. Screening has been proposed as a method to increase AF detection rates and reduce the incidence of poor prognosis through early intervention. Nevertheless, due to the cost implications and uncertainty over the benefits of a systematic screening programme, the International Task Force currently recommends against screening. This study is to employ Bayesian networks (BN) for assessing the pre-test probability (PTP) of AF in patients with CAD.
Accurate molecular and clinical stratification of patients with central nervous system (CNS) non-germinomatous germ cell tumors (NGGCTs) remains challenging, impeding the development of personalized therapeutic approaches. Herein, we investigated the translational significance of cerebrospinal fluid (CSF) circulating tumor DNA (ctDNA) in pediatric NGGCTs to identify characteristic features of CNS NGGCTs and to identify a subset of patients for whom the presence of residual disease is a risk modifier and an indicator of shorter PFS and OS. Medical records of patients with CNS NGGCTs confirmed by histology and/or tumor markers between January 1st, 2018, and December 31st, 2022, were reviewed retrospectively. In our analysis using the log-rank test, we found that the levels of ctDNA before chemotherapy as well as ctDNA clearance were consistently associated with PFS and OS(p<0.05) in patients. By setting a ctDNA positivity threshold of 6%, we stratified patients into two groups: those with high levels (above the threshold) and those with low levels (below the threshold). Patients with high ctDNA levels had significantly inferior 5-year PFS and OS compared to those with low levels. ctDNA or ctDNA clearance combined with the presence of residual disease predicted significantly worse OS and PFS(p<0.05). CSF ctDNA might allow the study of genomic evolution and the characterization of tumors in pediatric NGGCTs. Additionally, CSF ctDNA analysis may facilitate the clinical management of pediatric NGGCT patients and aid in designing personalized therapeutic strategies, thereby enhancing treatment efficacy while minimizing excessive treatment to mitigate long-term secondary effects.
The 15528 bp long complete mitochondrial genome (mt-genome) of a flat bug, Aradacanthia heissi Bai, Zhang & Cai,was determined. The entire genome contains typical 37 genes with an A+T content of 74.7%. The gene arrangement dif-fers from that of Drosophila yakuba Burla which is considered the representative ground pattern for insect mt-genomes,as the results of inversion of tRNAIle - tRNAGln and tRNACys - tRNATrp . All protein-coding genes (PCGs) use standard initia-tion codons (methionine and isoleucine), except COI which starts with TTG. Three of the 13 PCGs harbor the incompletetermination codon. Meanwhile, opposite CG-skew tendency occurs on the nucleotide composition and codon usage andthis tendency is also reflected on the J-strand and N-strand of PCGs. All tRNAs can fold into classic clover-leaf structure,whereas the dihydrouridine (DHU) arm of tRNASer(AGN) forms a simple loop. Secondary structure models of the ribosomalRNA genes of A. heissi are predicted and similar to those proposed for other insects. The control region is located betweensrRNA and tRNAGln with 81.5% A+T content, which was the most A+T-rich region of the mt-genome and four 68 bp tan-dem repeat units were found in this region. Phylogenetic analyses of available species of Pentatomomorpha showed Ara-doidea and the Trichophora are sister groups that bolstered the mainstream hypothesis, and provide the evidence for the feasibility of mt-genome data to resolve relationships at the subfamily level in Aradidae.
The complete sequence of the mitochondrial (mt) genome of the assassin bug, Sirtheneaflavipes (Stål), was determined. The circular genome is 15, 961 bp long and contains a standard gene complement, i.e., the large and small ribosomal RNA (rRNA) subunits, 22 transfer RNA (tRNA) genes, 13 protein-coding genes (PCGs), and the 1, 295 bp control region. The nucleotide composition of S. flavipes mt genome is 71.8% AT-rich, reflected in the predominance of AT-rich codons in PCGs. Compared with the other three reduviid species available in complete mt genomes, the genome architecture as well as the nucleotide composition, codon usage, and amino acid composition reflected high similarity. All PCGs use standard initiation codons (ATN); however, ND4L and ND1 started with GTG. Canonical TAA and TAG termination codons are found in nine PCGs, the remaining four (COIII, ND3, ND5, and ND]) have incomplete termination codons. All tRNAs have the typical clover-leaf structure, except the dihydrouridine (DHU) arm of tRNASer(AGN) forms a simple loop as seen in many other metazoans. Secondary structure models of the ribosomal RNA genes of S. flavipes are presented and are similar to those proposed for other insects. The structure of rrnL is more conservative than that of rrnS among sequenced assassin bugs. The monophyly of Reduviidae is highly supported by Bayesian inferences, and the Peiratinae presents a sister position to the Triatominae+ (Salyavatinae + Harpactorinae).
The 16, 299 bp long mitochondrial genome (mitogenome) of a tessaratomid bug, Eusthenes cupreus (Westwood), is reported and analyzed. The mitogenome represents the first sequenced complete mitogenome of the heteropteran family Tessaratomidae. The mitogenome of E. cuopreus is a typical circular DNA molecule with a total AT content of 74.1%, and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region. The gene arrangement is identical with the most common type in insects. Most PCGs start with the typical ATN codon, except that the initiation codon for COI is TTG. All tRNAs possess the typical clover-leaf structure, except tRNASer (AGN), in which the dihydrouridine (DHU) arm forms a simple loop. Six domains with 45 helices and three domains with 27 helices are predicted in the secondary structures of rrnL and rrnS, respectively. The control region is located between rrnS and tRNAIle, including some short microsatellite repeat sequences. In addition, three different repetitive sequences are found in the control region and the tRNAIle-tRNAGln-tRNAMet-ND2 gene cluster. One of the unusual features of this mitogenome is the presence of one tRNAGln-like sequence in the control region. This extra tRNAGln-like sequence is 73 bp long, and the anticodon arm is identical to that of the regular tRNAGln.
Patients with both coronary artery disease (CAD) and atrial fibrillation (AF) are at a high risk of major adverse cardiovascular and cerebrovascular events (MACCE) during hospitalization. Accurate prediction of MACCE can help identify high-risk patients and guide treatment decisions. This study was to elaborate and validate a dynamic nomogram for predicting the occurrence of MACCE during hospitalization in Patients with CAD combined with AF.