Fixation of cellulose-acetate membranes with either glutaraldehyde-osmium tetroxide or glutaraldehyde-ruthenium tetroxide resulted in extensive electron beam damage. Beam damage was eliminated and the bacterial surface structure was preserved, however, when cellulose-acetate membranes were fixed with glutaraldehyderuthenium tetroxide and treated successively with thiocarbohydrazide and osmium tetroxide.
Rock varnish occurs in virtually all environments, most commonly in arid and semi-arid climates, including Antarctica. Rock varnish consists of thin layers of intimately mixed aeolian and chemical sediments often showing botryoidal and more rarely stromatolite-like morphologies. Typical rock varnish samples collected at Twin Peak Mountain Park, near Phoenix, Arizona, consist of abundant quartz, with plagioclase, illite and a mixed layer, Fe-clay mineral, probably corrensite. EDS, SEM (BSE) and TEM analyses revealed that the typical Mn,Fe minerals occur as minute particles; some of these particles and other mineral grains are attached to filaments. XRD and electron diffraction showed that the Mn,Fe-bearing particles are poorly crystalline. The filaments, based on morphological criteria, are virtually indistinguishable from fungal filaments. Most filaments are fragments, probably broken by scraping during sample collection. Coccoid and rod-shaped forms, resembling cyanobacteria and other bacteria, respectively, are also present. Unlike definitive minerals, these filaments disintegrated in the concentrated energy of the SEM electron beam at the instrumental and experimental conditions used. In addition, no filamentous, rod-shaped or coccoid forms were observed in samples hydrolysed with 6 N HCl for 24 h at 100°C. Bacteria and fungi in powdered rock varnish were cultured on four media, incubated aerobically in the dark at 25°C. The culture media yielded dense growths of spore-forming bacteria and filamentous fungi. One fungus and two Bacillus isolates oxidized and concentrated manganese. Control experiments revealed that fungi and bacteria are present on and below the surfaces of rock varnish. Free and hydrolysed, peptide/protein-bound amino acids were identified in the rock varnish. Amino acids showed virtually no racemization with the exception of D/L asp = 0.1. Relatively high molecular weight humic matter was also separated from the rock varnish. High-resolution mass spectrometry revealed non-hydrocarbon moieties, similar to a Suwannee River (FL) humic acid standard. Micro-organisms and their original biochemical compounds do not seem to be preserved for long in the accreting varnish layer. The studies showed that the filaments helped to trap mineral particles of rock varnish, and that bacteria and fungi abetted Mn concentration. Some structures in the layers of rock varnish resemble stromatolites and present definitions would allow them to be termed as such.
Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and 32 P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum p H range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl 2 , iodoacetic acid, p -chloromercuribenzoic acid, NaN 3 , and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10 −3 m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions).
From the Proceedings of the 1986 Meetings of the Arizona Section - American Water Resources Association, Hydrology Section - Arizona-Nevada Academy of Science and the Arizona Hydrological Society - April 19, 1986, Glendale Community College, Glendale, Arizona
Sinclair , N. A. (Washington State University, Pullman) and J. L. Stokes . Factors which control maximal growth of bacteria. J. Bacteriol. 83: 1147–1154. 1962.—In a chemically defined medium containing 1% glucose and 0.1% (NH 4 ) 2 SO 4 , both of these compounds are virtually exhausted by the growth of Pseudomonas fluorescens . If these carbon, energy, and nitrogen sources are added back to the culture filtrate, maximal growth to the level of the original culture is obtained. This process can be repeated several times with the same results. Eventually, however, the supply of minerals in the culture limits growth. When the nutrient levels are raised to 3% glucose and 0.3% (NH 4 ) 2 SO 4 , lack of oxygen and low pH limit growth before the supply of nutrients is exhausted. There is no evidence that specific autoinhibitory substances are produced either in chemically defined or complex nitrogenous media or that physical crowding of the cells limits growth. The results with Escherichia coli are similar to those with P. fluorescens . However, after a few growth cycles aerobically and after only one growth cycle anaerobically, inhibitory substances, probably organic acids, accumulate and limit growth.
Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.
Anaerobic incubation of membrane filter cultures significantly enhanced detection of fecal coliforms in surface-water samples from recreational beaches. In contrast to standard aerobic incubation, anaerobic incubation suppressed overgrowth of masking, noncoliform bacteria but did not increase the frequency of fecal coliform recovery.
ABSTRACT Ground water from deep wells was sampled for the presence of heterotrophic bacteria. Over 500 bacteria were isolated from well‐water samples on a low‐nutrient medium (R2A). Gram‐negative, rod‐shaped, nonmotile bacteria predominated, and Acinetobacter spp. comprised 54% of the total number of isolates. Selected isolates were inoculated into unamended and carbon‐enriched well water, and growth was measured by acridine orange direct count (AODC). Carbon sources included glucose, acetate, pyruvate, and succinate in 100 μg carbon/liter and 1,000 μg carbon/liter concentrations. The isolates grew in unamended filtered well water within 24 hours, and growth of an Acinetobacter sp. was further stimulated (greater than two orders of magnitude within five days) in the carbon‐enriched well water.