As most occupational and environmental exposures to ionizing radiation are at low dose rates or in small dose fractions, risk estimation requires that the effects of the temporal distribution of dose are taken into account. Previous in vitro studies of oncogenic transformation, as well as in vivo studies of carcinogenesis induced by high-LET radiation, yielded controversial results concerning the presence of an inverse dose-rate effect. The present study tested the influence of one scheme of dose fractionation of monoenergetic neutrons on neoplastic transformation of C3H 10T1/2 cells. Neutrons of 0.5, 1.0 and 6.0 MeV were used. Cells were exposed to doses of 0.25 and 0.5 Gy, given acutely or in five fractions at 2-h intervals. The acute and fractionated irradiations with each energy were done on the same day. No significant difference between the two irradiation modes was found for both cell inactivation and neoplastic transformation at all energies. These results are in agreement with our data for fractionated fission-spectrum neutrons from the RSV-TAPIRO reactor.
The renewed application of fast neutrons in clinical radiotherapy has been stimulated by fundamental radiobiological findings. The biological effects of high LET radiation, including fast neutrons, are different from those obtained with x rays in at least three respects: the oxygen enhancement ratio, the sensitivity of cells at different phases of the cell cycle, and the contribution of sublethal damage to cell reproductive death. Furthermore, wide variations in relative biological effectiveness (RBE) have been observed for different tumors and normal tissues. Measurements of volume changes in human pulmonary metastases indicate that the RBE for slowly growing tumors which are generally well‐differentiated is higher than that for poorly differentiated lesions. Six thousand patients have now been treated with fast neutron beams. The results of the clinical applications vary according to the method of application and to the type of cancer involved: treatment of inoperable malignancies of the salivary gland is very encouraging; the therapeutic gain is rather small for bladder and rectal cancers, soft tissue sarcomas and advanced carcinomas of the cervix; the responses of brain tumors are very disappointing. Most neutron radiotherapy applications have been less than optimal because of inadequate physical and technical conditions. Despite these difficulties, some interesting clinical data have become available. Due to the technical shortcomings, the possible advantages of fast neutrons are probably underestimated for many tumor sites. Well‐designed clinical trials, preferably performed with high energy cyclotrons in clinical environments, will provide a decisive answer to the question of the usefulness of the new radiation modality. Key words: fast neutrons, radiotherapy, radiobiology
SummaryCancer induction is generally considered to be the most important somatic effect of low doses of ionizing radiation. It is therefore of great concern to assess the quantitative cancer risk of exposure to radiations of different quality and to obtain information on the dose-response relationships for carcinogenesis.Tissues in the human with a high sensitivity for cancer induction include the bone marrow, the lung, the thyroid and the breast in women. If the revised dosimetry estimates for the Japanese survivors of the atomic bomb explosions are correct, there is no useful data base left to derive r.b.e. values for human carcinogenesis. As a consequence, it will be necessary to rely on results obtained in biological systems, including experimental animals, for these estimates.With respect to radiation protection, the following aspects of experimental studies on radiation carcinogenesis are of relevance:(1) Assessment of the nature of dose-response relationships.(2) Determination of the relative biological effectiveness of radiations of different quality.(3) Effects of fractionation or protraction of the dose on tumour development.For the analysis of tumour data in animals, specific approaches have to be applied which correct for competing risks. These methods include actuarial estimates, non-parametric models and analytical models. The dose-response curves for radiation-induced cancers in different tissues vary in shape. This is exemplified by studies on myeloid leukaemia in mice and mammary neoplasms in different rat strains. The results on radiation carcinogenesis in animal models clearly indicate that the highest r.b.e. values are observed for neutrons with energies between 0.5 and 1 MeV. On the basis of such results it might be concluded that the maximum quality factor of 10 for neutrons should be increased. Based on current evidence, an increase by a factor of 2 to 3 seems more realistic than a tenfold rise. The diversity of dose-response relationships point to different mechanisms involved in the induction of different tumours in various species and even in different strains of the same species.