Adrenomedullin is a 52-amino acid peptide first described in a human phaeochromocytoma but since been found to be present in many tissues, including the vascular system and bone. Because of its structural similarity to amylin and calcitonin gene-related peptide, both of which have actions on bone cells, we have previously assessed the effects of adrenomedullin on the skeleton, and found that it increases osteoblast proliferation in vitro and bone formation following local injection in vivo. The present study carries this work forward by assessing the effects on bone of the systemic administration of a fragment of this peptide lacking the structural requirements for vasodilator activity. Two groups of 20 adult male mice received 20 injections of human adrenomedullin(27-52) 8.1 microg or vehicle over a 4-week period and bone histomorphometry and strength were assessed. In the tibia, adrenomedullin(27-52) produced increases in the indices of osteoblast activity, osteoid perimeter and osteoblast perimeter (P<0.05 for both using Student's t-test). Osteoclast perimeter was not affected. There was a 21% increase in cortical width and a 45% increase in trabecular bone volume in animals treated with adrenomedullin(27-52) (P<0.002 for both). Assessment of bone strength by three-point bending of the humerus showed both the maximal force and the displacement to the point of failure were increased in the animals treated with adrenomedullin(27-52) (P<0.03 for both). There was also a significant increase in the thickness of the epiphyseal growth plate. No adverse effects of the treatment were noted. It is concluded that adrenomedullin(27-52) acts as an anabolic agent on bone. These findings may be relevant to the normal regulation of bone mass and to the design of agents for the treatment of osteoporosis.
The sensory neurons of the wing of Drosophila arise during the first 24 hr of metamorphosis, and their axons converge to form a stereotyped set of nerves projecting proximally from the peripherally located cell bodies through the wing and towards the CNS. To better characterize the cues guiding this stereotyped axon outgrowth, we have performed a series of transplantation studies in which neurons from a variety of sources (wing, eye, antenna, and leg disks) were placed into mutant, aneural wings. Axons growing from such implants in effect assay the host wing for the presence and location of guidance cues. Our results show, first, that such axons prefer to grow in the normal, proximal direction and, second, that they prefer to grow along the approximate site of one of the normal nerves, that of the third longitudinal vein. It therefore appears that the aneural wing epithelium contains cues capable of directing both the polarity and the location of axonal outgrowth. These cues are relatively non-specific, in that a variety of neuronal types are capable of responding to them.
In the present investigation, we studied whether neurotrophin-3 (NT-3) contributes to the rescue of axotomized Clarke's nucleus (CN) neurons in adult rats. A significant (24%) loss of CN neurons occurred at L-1 ipsilateral to T-8 hemisection by 14 days, which reached 31% at 2 months and then stabilized. Axotomized CN neurons had also atrophied by 14 days, but mean cell size did not decrease further. Animals that received gelfoam soaked in nerve growth factor, brain derived neurotrophic factor, or ciliary neurotrophic factor at the lesion site also showed a 30% neuron loss at 2 months, and a 40% reduction in average cell area. Rats receiving NT-3 showed a 15% neuron loss, which was not improved by additional neurotrophins in combination with NT-3. None of the treatments prevented neuron atrophy. Bioassay of the gelfoam showed that NT-3 bioactivity remained at 5 days after surgery but not at 14 days. Additional rats with hemisections that received NT-3 continuously via mini-pump for 2 months showed a 15% neuron loss, the same as with NT-3 given via gelfoam. These results indicate that even limited exposure of axotomized CN neurons to NT-3 produces permanent rescue of 50% of the neurons. The virtually complete rescue that we had previously observed with transplants of fetal central nervous system (CNS) tissues may, therefore, be due at least in part to NT-3, but the exogenous administration of a single neurotrophic factor or a combination of neurotrophic factors is less effective than transplants in producing long-term survival of axotomized CNS neurons.
To determine the effects of neurotrophin-secreting transplants combined with exercise and serotonergic drug challenges on recovery of hindlimb function in rats with midthoracic spinal cord transection injuries.Spinalized animals received transplants of fibroblasts genetically modified to express brain-derived neurotrophic factor and neurotrophin-3 and daily cycling exercise. Hindlimb movement in an open-field test (BBB) was scored weekly. Serotonin agonists were used monthly to further stimulate motor function. Axonal growth was quantified in the transplant and at L5 using immunocytochemical markers. Weights of hindlimb muscles were used to assess muscle atrophy.Neurotrophin-secreting transplants stimulated axonal growth, and cycling prevented muscle atrophy, but individual treatments did not improve motor scores. Combined treatments resulted in improvements in motor function. Serotonergic agonists further improved function in all groups, and transplant groups with exercise achieved weight-supporting levels following drug treatment.Combined treatments, but not individual treatments, improved hindlimb function.
Abstract Through anatomical and physiological studies of the regenerating retinotectal projection of goldfish, we sought to determine whether the establishment of a topographic projection is attained through a refinement of an initially less precise pattern of innervation. A 1‐mm‐wide mediolateral strip of caudal tectum was removed so that a small island of tectal tissue was spared at the caudal pole, and the contralateral nerve was either crushed (TIX) or left intact (TI). The presence of regenerated axons in the ablated zone and the reinnervation of the caudal island were assessed with anterograde and retrograde labeling methods in the following postoperative intervals: early, 20–50 days; middle, 50–110 days; and late, more than 170 days. The anterograde radioautographic method revealed that the appropriate layers of the tectal island became reinnervated by optic axons during the early period. During the middle and late periods, one to several large, discrete bundles bridging the lesion zone along the surface of exposed sub‐tectal structures were readily identified both by radioautography and by anterograde or retrograde labeling following application of horseradish peroxidase to the transected optic nerve or tectal island, respectively. In contrast, the anterograde horseradish peroxidase method did not reveal axon bundles extending caudal to the half‐tectum in the absence of a tectal island. Among TIX cases, retrograde horseradish peroxidase labeling of the contralateral nasal retina was more widespread in the middle period than in the late period, a result we interpret as reflecting an improvement in topographical precision with time. The area of retinal labeling among TIX cases in the late period was similar to that following caudal tectal injection in cases with simple nerve crush, although it was still elevated above normal control values. Physiological maps indicated a focal representation of the nasal retina in the tectal island in both periods and did not reveal a transient extreme convergence of retinal input. These findings are discussed in relation to Sperry's chemoaffinity theory.
Abstract Spontaneous growth of axons after injury is extremely limited in the mammalian central nervous system (CNS). It is now clear, however, that injured CNS axons can be induced to elongate when provided with a suitable environment. Thus injured CNS axons can elongate, but they do not do so unless their environment is altered. We now show apparent regenerative growth of injured optic axons. This growth is achieved in the adult rabbit optic nerve by the use of a combined treatment consisting of: (1) supplying soluble substances originating from growing axons to the injured rabbit optic nerves (Schwartz et al., Science, 228 :600–603, 1985), and (2) application of low energy He‐Ne laser irradiation, which appears to delay degenerative changes in the injured axons (Schwartz et al., Lasers Surg. Med., 7 :51–55. 1985; Assia et al., Brain Res., 476 :205–212, 1988). Two to 8 weeks after this treatment, unmyelinated and thinly myelinated axons are found at the lesion site and distal to it. Morphological and immunocytochemical evidence indicate that these thinly myelinated and unmyelinated axons are growing in close association with glial cells. Only these axons are identified as being growing axons. These newly growing axons traverse the site of injury and extend into the distal stump of the nerve, which contains degenerating axons. Axons of this type could be detected distal to the lesion only in nerves subjected to the combined treatment. No unmyelinated or thinly myelinated axons in association with glial cells were seen at 6 or 8 weeks postoperatively in nerves that were not treated, or in nerves in which the two stumps were completely disconnected. Two millimeters distal to the site of injury, the growing axons are confined to a compartment comprising 5%–30% of the cross section of the nerve. A temporal analysis indicates that axons have grown as far as 6 mm distal to the site of injury, by 8 weeks postoperatively. Anterograde labeling with horseradish peroxidase, injected intraocularly, indicates that some of these newly growing axons arise from retinal ganglion cells.