After Helicobacter pylori infection in humans, gastric epithelial cells (GECs) undergo apoptosis due to stimulation by the bacteria or inflammatory cytokines. In this study, we assessed the expression and function of brain angiogenesis inhibitor 1 (BAI1) in the engulfment of apoptotic GECs using human tissue and cells. After induction of apoptosis by H. pylori or camptothecin, there was a 5-fold increase in the binding of apoptotic GECs to THP-1 cells or peripheral blood monocyte-derived macrophages as assayed by confocal microscopy or conventional and imaging flow cytometry. Binding was impaired 95% by pretreating apoptotic cells with annexin V, underscoring the requirement for phosphatidylserine recognition. The phosphatidylserine receptor BAI1 was expressed in human gastric biopsy specimens and gastric phagocytes. To confirm the role of BAI1 in apoptotic cell clearance, the functional domain of BAI1 was used as a competitive inhibitor or BAI1 expression was inhibited by small interfering RNA. Both approaches decreased binding and engulfment >40%. Exposing THP-1 cells to apoptotic cells inhibited IL-6 production from 1340 to <364 pg/ml; however, this decrease was independent of phagocytosis. We conclude that recognition of apoptotic cells by BAI1 contributes to their clearance in the human gastric mucosa and this is associated with anti-inflammatory effects.—Das, S., Sarkar, A., Ryan, K. A., Fox, S., Berger, A. H., Juncadella, I. J., Bimczok, D., Smythies, L. E., Harris, P. R., Ravichandran, K. S., Crowe, S. E., Smith, P. D., Ernst, P. B. Brain angiogenesis inhibitor 1 is expressed by gastric phagocytes during infection with Helicobacter pylori and mediates the recognition and engulfment of human apoptotic gastric epithelial cells. FASEB J. 28, 2214–2224 (2014). www.fasebj.org
Abstract Helicobacter pylori infection causes inflammation and increases the expression of IL-8 in human gastric epithelial cells. H. pylori activates NF-κB and AP-1, essential transcriptional factors in H. pylori-induced IL-8 gene transcription. Although colonization creates a local oxidative stress, the molecular basis for the transition from infection to the expression of redox-sensitive cytokine genes is unknown. We recently reported that the expression of apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE-1/Ref-1), which repairs oxidative DNA damage and reductively activates transcription factors including AP-1 and NF-κB, is increased in human gastric epithelia during H. pylori infection. In this study, we examine whether APE-1/Ref-1 functions in the modulation of IL-8 gene expression in H. pylori-infected human gastric epithelial cells. Small interfering RNA-mediated silencing of APE-1/Ref-1 inhibited basal and H. pylori-induced AP-1 and NF-κB DNA-binding activity without affecting the nuclear translocation of these transcription factors and also reduced H. pylori-induced IL-8 mRNA and protein. In contrast, overexpression of APE-1/Ref-1 enhanced basal and H. pylori-induced IL-8 gene transcription, and the relative involvement of AP-1 in inducible IL-8 promoter activity was greater in APE-1/Ref-1 overexpressing cells than in cells with basal levels of APE-1/Ref-1. APE-1/Ref-1 inhibition also reduced other H. pylori-induced chemokine expression. By implicating APE-1/Ref-1 as an important regulator of gastric epithelial responses to H. pylori infection, these data elucidate a novel mechanism controlling transcription and gene expression in bacterial pathogenesis.
ABSTRACT The prevalence of clarithromycin resistance-associated mutations, the cytotoxin-associated gene ( cagA ), and the various vacuolating cytotoxin ( vacA ) genotypes was determined in 50 gastric biopsy specimens from Helicobacter pylori -infected patients, using line probe assays. The clarithromycin resistance-associated mutation A2143G was detected in H. pylori strains from 26% of the specimens, which suggested that the high rate of H. pylori treatment failure in Ireland may be partly attributable to the presence of these mutations. All strains examined carried the vacA s1 genotype, and 76% were cagA positive. Of these 50 specimens, 13 (26%) carried H. pylori strains with vacA midregion genotype m1, 29 (58%) carried strains that were m2, 1 (2%) was infected by a strain that was positive for both m1 and m2, and 7 (14%) carried strains that could not be typed.
At the University of Virginia (UVa) Hospital, medical residents and interns serve month-long rotations through different medical specialties. The competing considerations governing the annual assignment and scheduling of rotations are complex, including hospital staffing requirements, individual preferences for specialties and holidays, breadth of exposure, and externally imposed regulations on duty hours. In this paper, we describe the development of a fully-integrated software system that relieves the chief resident in internal medicine from the difficult and time-consuming task of manual schedule preparation. The system features online data collection, storage, and retrieval and incorporates Gurobi linear solver for optimal schedule generation. The system has been demonstrated to yield schedules that are at least as good as (and often superior to) those developed manually, at an annual savings of more than two-hundred hours of professional time. With minor customization, the system could be applied to hospitals across the country, potentially saving millions of dollars, improving the quality of both graduate medical education and overall patient care.
Much work has focused on trying to identify markers in Helicobacter pylori that might allow the eventual disease outcome of an infection to be predicted. In this study we examined the cagA and vacA genotype, and Lewis status in a panel of 43 Irish H. pylori clinical isolates, and investigated a possible correlation with disease pathology. In addition, differences in the poly-(C) tract of the α(1,3)-fucosyltransferase gene were examined to identify a possible correlation with gene expression. Only three of 43 isolates were cagA-negative, whereas the remaining 40 isolates, independent of pathology, were cagA-positive. In all the strains we examined, the vacA signal-sequence was type s1a. For the vacA mid-region 12/43 isolates were type m1 and 31/43 isolates were type m2. These data, and examination of isolates from different pathology groups, suggests that there is no correlation between virulence and vacA genotype in the Irish population of H. pylori isolates. Western blotting of whole cell lysates from 32 H. pylori isolates showed 3/32 displayed only the Lex epitope, 12/32 only the Ley, 13/32 both epitopes and 4/32 neither epitope. No apparent association between Lewis phenotype and disease pathology was evident. A range of lengths of poly-(C) tract were observed in the α(1,3)-fucosyltransferase gene, however the length of the tract in an isolate did not correlate with the Lewis structures present. We conclude that future studies on H. pylori pathogenesis should not alone focus on the importance of molecular markers, but also on the host response, including genetic background and immune responsiveness.
The Helicobacter pylori protein HP0958 is essential for flagellum biogenesis. It has been shown that HP0958 stabilizes the sigma(54) factor RpoN. The aim of this study was to further investigate the role of HP0958 in flagellum production in H. pylori. Global transcript analysis identified a number of flagellar genes that were differentially expressed in an HP0958 mutant strain. Among these, the transcription of the major flagellin gene flaA was upregulated twofold, suggesting that HP0958 was a negative regulator of the flaA gene. However, the production of the FlaA protein was significantly reduced in the HP0958 mutant, and this was not due to the decreased stability of the FlaA protein. RNA stability analysis and binding assays indicated that HP0958 binds and destabilizes flaA mRNA. The HP0958 mutant was successfully complemented, confirming that the mutant phenotype described was due to the lack of HP0958. We conclude that HP0958 is a posttranscriptional regulator that modulates the amount of the flaA message available for translation in H. pylori.
Helicobacter pylori is a human gastric pathogen which is dependent on motility for infection. The H. pylori genome encodes a near-complete complement of flagellar proteins compared to model enteric bacteria. One of the few flagellar genes not annotated in H. pylori is that encoding FliK, a hook length control protein whose absence leads to a polyhook phenotype in Salmonella enterica. We investigated the role of the H. pylori gene HP0906 in flagellar biogenesis because of linkage to other flagellar genes, because of its transcriptional regulation pattern, and because of the properties of an ortholog in Campylobacter jejuni (N. Kamal and C. W. Penn, unpublished data). A nonpolar mutation of HP0906 in strain CCUG 17874 was generated by insertion of a chloramphenicol resistance marker. Cells of the mutant were almost completely nonmotile but produced sheathed, undulating polyhook structures at the cell pole. Expression of HP0906 in a Salmonella fliK mutant restored motility, confirming that HP0906 is the H. pylori fliK gene. Mutation of HP0906 caused a dramatic reduction in H. pylori flagellin protein production and a significant increase in production of the hook protein FlgE. The HP0906 mutant showed increased transcription of the flgE and flaB genes relative to the wild type, down-regulation of flaA transcription, and no significant change in transcription of the flagellar intermediate class genes flgM, fliD, and flhA. We conclude that the H. pylori HP0906 gene product is the hook length control protein FliK and that its function is required for turning off the sigma(54) regulon during progression of the flagellar gene expression cascade.
The bacterial flagellum is a highly complex prokaryotic organelle. It is the motor that drives bacterial motility, and despite the large amount of energy required to make and operate flagella, motile organisms have a strong adaptive advantage. Flagellar biogenesis is both complex and highly coordinated and it typically involves at least three two-component systems. Part of the flagellum is a type III secretion system, and it is via this structure that flagellar components are exported. The assembly of a flagellum occurs in a number of stages, and the "checkpoint control" protein FliK functions in this process by detecting when the flagellar hook substructure has reached its optimal length. FliK then terminates hook export and assembly and transmits a signal to begin filament export, the final stage in flagellar biosynthesis. As yet the exact mechanism of how FliK achieves this is not known. Here we review what is known of the FliK protein and discuss the evidence for and against the various hypotheses that have been proposed in recent years to explain how FliK controls hook length, FliK as a molecular ruler, the measuring cup theory, the role of the FliK N terminus, the infrequent molecular ruler theory, and the molecular clock theory.