The effect of glutamine on the activity of the NADPH oxidase complex from rat neutrophils was investigated. Superoxide anion (O(2)(-)) production was assessed: (1) by scintillation counting by using lucigenin, and (2) by reduction of cytochrome c over 10 min. The effects of glutamine and PMA on the expression of the NADPH oxidase components p22( phox ), gp91( phox ) and p47( phox ) were also determined. Glutamine at 1 and 2 mM increased O(2)(-) generation in the presence of PMA by 100% and 74% respectively, in neutrophils maintained previously for 3 h in medium deprived of this amino acid. DON (6-diazo-5-oxo-L-norleucine), an inhibitor of phosphate-dependent glutaminase and thus of glutamine metabolism, caused a significant decrease in O(2)(-) production by neutrophils stimulated with PMA both in the absence (44%) and in the presence (66%) of glutamine. PMA markedly increased the expression of gp91( phox ), p22( phox ) and p47( phox ) mRNAs. Glutamine (2 mM) increased the expression of these three proteins both in the absence and in the presence of PMA. We postulate that glutamine leads to O(2)(-) production in neutrophils, probably via the generation of ATP and regulation of the expression of components of NADPH oxidase.
Natriuretic peptide receptors (NPR) are expressed in thyroid-derived cells, including the rat FRTL-5 thyroid cell line. We have previously demonstrated that atrial natriuretic factor (ANF) binding consistent with the NPR-A receptor is significantly increased in FRTL-5 cells cultured in the presence of TSH. The purpose of the present study was to determine whether TSH treatment, therefore, results in higher levels of ANF-induced intracellular cGMP, and whether TSH elicits similar effects on cGMP signaling through the NPR-B receptor. We now show that contrary to expectation, long term exposure to 1 mIU/ml bovine TSH (6H medium) does not significantly alter maximal ANF-induced cGMP formation. Moreover, TSH treatment decreased C-type natriuretic peptide (CNP)-induced cGMP generation in FRTL-5 cells, suggesting a down-regulation of NPR-B. A similar effect of TSH on ANF- and CNP-induced cGMP was observed in FRTL cells, the precursor of the FRTL-5 cell line. Scatchard analysis of [125I]ANF binding in TSH-treated (6H) FRTL-5 cultures indicated a 5.6-fold increase in high affinity ANF-binding sites compared with TSH-deficient (5H) cultures [binding capacity (Bmax) of 6H cells, 227.2 +/- 33.7 fmol/mg protein; Bmax of 5H cells, 40.2 +/- 4.7 fmol/mg protein]. The effect of TSH on [125I]ANF binding was mimicked by forskolin and (Bu)2cAMP, indicating receptor up-regulation via a cAMP pathway. High affinity [125I]CNP-binding sites were present in much lower abundance (Bmax of 5H, 0.80 +/- 0.06 fmol/mg protein), and no effect of TSH treatment on them could be demonstrated. However, low affinity [125I]CNP binding was increased by TSH. RT-PCR confirmed the presence of both NPR-A and NPR-B transcripts in FRTL-5 cells and showed that TSH treatment significantly decreased NPR-B, but not NPR-A. NPR-C transcript was not detectable by RT-PCR in FRTL-5 cells cultured in high TSH medium, suggesting that the ANF-binding sites increased by TSH are not NPR-C. Both CNP and ANF transcript were also expressed in FRTL-5 cells, and CNP was increased by TSH. Together the data support the down-regulation of functional NPR-B and no change in functional NPR-A by TSH. The vast majority of ANF-binding sites in FRTL-5 cells, therefore, are not coupled to cGMP production and may represent a novel or altered form of NPR that is regulated by TSH independently of NPR-A and NPR-B.
Graves' disease is an autoimmune disorder of the thyroid characterized by a) a diffusely enlarged thyroid gland (goiter); b) symptoms of hyperthyroidism; and, on occasion, c) two connective tissue complications: exophthalmos and pretibial myxedema. The weight of evidence suggests that Graves' disease is a disturbance of the immune system which results in the entrance, into the sera, of thyroid stimulating autoantibodies (TSAbs) which stimulate the thyroid and induce the hyperthyroid state. The idea evolved that TSAbs were related to the thyrotropin (TSH) receptor since IgG preparations from the sera of many Graves' patients could stimulate thyroid adenylate cyclase activity as did TSH and could inhibit TSH binding (1, 2).
An endothelial nitric oxide synthase gene (NOS3) polymorphism in exon 7 (G894T), resulting in Glu298Asp substitution at protein level, has been associated with myocardial infarction, hypertension and coronary atherosclerosis in some populations. This polymorphism is usually identified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, the procedures described to date do not eliminate the possibility of misclassification and either require confirmation by DNA sequencing or are timeconsuming. In this study, a PCR-RFLP procedure to detect the G894T polymorphism at the NOS3 was optimized by the introduction of a constitutive cleavage site in the amplification product. This cleavage site provides an internal control for enzymatic activity to avoid mistyping. The method was validated by the study of 35 white unrelated individuals with familial hypercholesterolemia and 70 controls. The frequency of the variant allele (T) was similar between both groups (27% vs. 22%, NS), and comparable to the frequency found in other white populations. However, future studies are necessary to confirm these data. In summary, the optimized procedure for detection of the G894T NOS3 polymorphism is rapid, simple, and does not require confirmatory tests. Using this method, we found no association between this polymorphism and familial hypercholesterolemia.
Glucose is widely accepted as the primary nutrient for the maintenance and promotion of cell function. This metabolite leads to production of ATP, NADPH and precursors for the synthesis of macromolecules such as nucleic acids and phospholipids. We propose that, in addition to glucose, the 5-carbon amino acids glutamine and glutamate should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine/glutamate are many, i.e., they are substrates for protein synthesis, anabolic precursors for muscle growth, they regulate acid-base balance in the kidney, they are substrates for ureagenesis in the liver and for hepatic and renal gluconeogenesis, they act as an oxidative fuel for the intestine and cells of the immune system, provide inter-organ nitrogen transport, and act as precursors of neurotransmitter synthesis, of nucleotide and nucleic acid synthesis and of glutathione production. Many of these functions are interrelated with glucose metabolism. The specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells are discussed in the context of glucose requirements and cell function.