CD19-directed chimeric antigen receptor-T (CAR-T) cells with a 4-1BB or CD28 co-stimulatory domain have shown impressive antitumor activity against relapsed or refractory B cell acute lymphoblastic leukemia (r/r B-ALL). However, a parallel comparison of their performances in r/r B-ALL therapy has not been sufficiently reported. Here, we manufactured 4-1BB- and CD28-based CD19 CAR-T cells using the same process technology and evaluated their efficacy and safety in r/r B-ALL therapy based on pre-clinical and exploratory clinical investigations. In B-ALL-bearing mice, a similar antitumor effect and CAR-T kinetics in peripheral blood were observed at the CAR-T dose of 1 × 107/mouse. However, when the dose was decreased to 1 × 106/mouse, 4-1BB CAR-T cells were more potent in eradicating tumor cells and showed longer persistence than CD28 CAR-T cells. Retrospective analysis of an exploratory clinical study that used 4-1BB- or CD28-based CAR-T cells to treat r/r B-ALL was performed. Compared with CD28 CAR-T cells, 4-1BB CAR-T cells resulted in higher antitumor efficacy and less severe adverse events. This study demonstrated that the performance of 4-1BB CAR-T cells was superior to that of CD28 CAR-T cells in suppressing CD19+ B-ALL, at least under our manufacturing process. CD19-directed chimeric antigen receptor-T (CAR-T) cells with a 4-1BB or CD28 co-stimulatory domain have shown impressive antitumor activity against relapsed or refractory B cell acute lymphoblastic leukemia (r/r B-ALL). However, a parallel comparison of their performances in r/r B-ALL therapy has not been sufficiently reported. Here, we manufactured 4-1BB- and CD28-based CD19 CAR-T cells using the same process technology and evaluated their efficacy and safety in r/r B-ALL therapy based on pre-clinical and exploratory clinical investigations. In B-ALL-bearing mice, a similar antitumor effect and CAR-T kinetics in peripheral blood were observed at the CAR-T dose of 1 × 107/mouse. However, when the dose was decreased to 1 × 106/mouse, 4-1BB CAR-T cells were more potent in eradicating tumor cells and showed longer persistence than CD28 CAR-T cells. Retrospective analysis of an exploratory clinical study that used 4-1BB- or CD28-based CAR-T cells to treat r/r B-ALL was performed. Compared with CD28 CAR-T cells, 4-1BB CAR-T cells resulted in higher antitumor efficacy and less severe adverse events. This study demonstrated that the performance of 4-1BB CAR-T cells was superior to that of CD28 CAR-T cells in suppressing CD19+ B-ALL, at least under our manufacturing process.
Electrocatalytic water splitting suffers from sluggish kinetics towards the hydrogen evolution reaction (HER). Balancing the adsorption/desorption ability towards H* and OH* is considered to be an efficient way to enhance the HER efficiency, but it is too hard at one activity site. In this work, the HER activity of the single 3d transition metal atom-anchored BC2N monolayer (M@BC2N, M = Fe, Co, and Ni) was investigated by a density functional theory approach. Our calculation suggests that an efficient dual-active site is formed on M@BC2N towards the HER, i.e., the metal center M as the OH* active site and its adjacent C atoms as the H* active site. The combination of single M atoms with the BC2N monolayer can effectively tune the electronic structure of dual active sites to optimize the adsorption of H* and OH*, resulting in a HER activity sequence of Fe@BC2N < Co@BC2N < Ni@BC2N. Notably, the HER exchange current density of Ni@BC2N reaches up to 0.53 mA cm-2, which is close to the value for commercial Pt/C, suggesting its huge potential in the HER.
The rapidly expanding transportation hub system in China has driven a large number of track and highway engineering projects nationwide, resulting in increasing interchanges of highway and railway tunnels year on year. The mutual impact between new and existing tunnels is one of the most important topics in geotechnical engineering. Constructed undercrossing, an existing highway tunnel is commonly seen in new railway tunnel projects. The new railway tunnel excavation will affect the stability and safety of the existing highway tunnel. Our study takes the newly built Huilongwan Railway Tunnel section undercrossing the existing Longzhouwan Highway Tunnel, one of the East Ring Line Projects of Chongqing Railway Terminal, as the object. This article simulated the displacement changes and structural deformation pattern of the existing highway tunnel caused by the excavation of the new railway tunnel with finite element analysis software and compared them with on-site measurements one by one to clarify the impact of new railway tunnel excavation on the stability of the existing highway tunnel. The result proved that the non-blasting excavation with a three-step temporary invert method could ensure the safety of the existing highway tunnel.
Background Chimeric antigen receptor (CAR)-T cell has revolutionary efficacy against relapsed/refractory multiple myeloma (R/R MM). However, current CAR-T cell therapy has several limitations including long vein-to-vein time and limited viability. Methods A 4-1BB-costimulated B-cell maturation antigen (BCMA) CAR-T integrating an independently-expressed OX40 (BCMA-BBZ-OX40) was designed and generated by a traditional manufacturing process (TraditionCART) or instant manufacturing platform (named InstanCART). The tumor-killing efficiency, differentiation, exhaustion, and expansion level were investigated in vitro and in tumor-bearing mice. An investigator-initiated clinical trial was performed in patients with R/R MM to evaluate the outcomes of both TraditionCART and InstanCART. The primary objective was safety within 1 month after CAR-T cell infusion. The secondary objective was the best overall response rate. Results Preclinical studies revealed that integrated OX40 conferred BCMA CAR-T cells with superior cytotoxicity and reduced exhaustion levels. InstanCART process further enhanced the proliferation and T-cell stemness of BCMA-BBZ-OX40 CAR-T cells. BCMA-BBZ-OX40 CAR-T cells were successfully administered in 22 patients with R/R MM, including 15 patients with TraditionCART and 7 patients with InstanCART. Up to 50% (11/22) patients had a high-risk cytogenetic profile and 36% (8/22) had extramedullary disease. CAR-T therapy caused grade 1–2 cytokine release syndrome in 19/22 (80%) patients, grade 1 neurotoxicity in 2/22 (9%) patients and led to ≥grade 3 adverse events including neutropenia (20/22, 91%), thrombocytopenia (15/22, 68%), anemia (12/22, 55%), creatinine increased (1/22, 5%), hepatic enzymes increased (5/22, 23%), and sepsis (1/22, 5%). The best overall response rate was 100%, and 64% (14/22) of the patients had a complete response or better. The median manufacturing time was shorter for InstanCART therapy (3 days) than for TraditionCART therapy (10 days). Expansion and duration were dramatically higher for InstanCART cells than for TraditionCART cells. Conclusions BCMA-BBZ-OX40 CAR-T cells were well tolerated and exhibited potent responses in patients with R/R MM. InstanCART shortened the manufacturing period compared to TraditionCART, and improved the cellular kinetics. Our results demonstrated the potency and feasibility of OX40-modified BCMA CAR-T cells using InstanCART technology for R/R MM therapy. Trial registration number This trial was registered at www.clinicaltrials.gov as # NCT04537442 .