Globoid cell leukodystrophy (GLD) or Krabbe disease is a neurodegenerative disorder caused by a deficiency of galactocerebrosidase (GALC) activity. GALC is required for the lysosomal degradation of galactosylceramide, psychosine, and possibly other galactolipids. This process is extremely important during active myelination. In the absence of functional GALC, psychosine accumulates, resulting in the apoptotic death of myelin-producing cells. While most patients are infants who do not survive beyond 2 years of age, some older patients are also diagnosed. Hematopoietic stem cell transplantation has proven to have a positive effect on the course of some patients with late-onset Krabbe disease. Murine models of this disease provide an excellent opportunity to evaluate therapeutic alternatives including gene therapy. In this study we used serotype 1 AAV to express mouse GALC under the control of the human cytomegalovirus promoter. Direct administration of these viral particles into the brains of neonatal mice with GLD resulted in sustained expression of GALC activity, improved myelination, attenuated symptoms, and prolonged life span. While this treatment also resulted in significant pathological improvements, the treated mice died with symptoms similar to those of the untreated mice. Additional initiatives may be required to prevent the onset of disease and reverse the course of the disease in animal models and human patients.
Globoid cell leukodystrophy (GLD) or Krabbe disease is a neurodegenerative disorder that affects both the central and peripheral nervous system (CNS and PNS). The deficiency of the lysosomal enzyme galactocerebrosidase (GALC) leads to the accumulation of psychosine, resulting in the death of oligodendrocytes and Schwann cells. Bone marrow transplantation (BMT) of the mouse models of GLD can prolong their lives up to one year compared to 40-50 days if untreated. Intracranial and intraventricular injections of adeno-associated virus (AAV) types 1 and 5 containing mouse GALC cDNA into affected mice results in widespread GALC expression in the brain, pathological improvement and modest extension of life span compared to untreated mice. Mice treated with either BMT or viral therapy still demonstrate mild twitching and premature death at least partially due to lack of correction of PNS pathology. In an attempt to improve the biochemical and pathological condition of the peripheral nerves in affected mice, AAV2/1-mGALC viral particles were injected into the gastrocnemius muscles of affected mice. Biochemical analysis of the different tissues from the treated mice demonstrated very high GALC activity in the injected muscle and significantly increased GALC activity in the contralateral muscles. This was confirmed by histochemical staining of GALC activity where a large number of myofibers and the sciatic nerve in the injected side were strongly positive. The sciatic nerve on the contralateral side was also positive for GALC activity. While the sciatic nerve of untreated affected mice was thickened due to edema, initial studies following intramuscular injection showed that the sciatic nerve was much thinner and similar to control mice. Sections from the spinal cord also demonstrated some GALC-positive motoneurons indicating retrograde transfer of AAV2/1-GALC from the intramusclar injections. Transgene expression in the injected muscle was still very strong three months after injection. Combining intramuscular injections with other therapeutic approaches that improve the CNS pathology may have additional advantages in the successful treatment of the animal models of GLD.
Krabbe disease is an autosomal recessive disorder resulting from defects in the lysosomal enzyme galactocerebrosidase (GALC). GALC deficiency leads to severe neurological features. The only treatment for presymptomatic infantile patients and later-onset patients is hematopoietic stem cell transplantation (HSCT). This treatment is less than ideal with most patients eventually developing problems with gait and expressive language. Several naturally occurring animal models are available, including twitcher (twi) mice, which have been used for many treatment trials. Previous studies demonstrated that multiple injections of AAVrh10-GALC into the central nervous system (CNS) of neonatal twi mice resulted in significant improvements. Recently we showed that one i.v. injection of AAVrh10-GALC on PND10 resulted in normal GALC activity in the CNS and high activity in the peripheral nervous system (PNS). In the present study, a single i.v. injection of AAVrh10-GALC was given 1 day after bone marrow transplantation (BMT) on PND10. The mice show greatly extended lifespan and normal behavior with improved CNS and PNS findings. Since HSCT is the standard of care in human patients, adding this single i.v. injection of viral vector may greatly improve the treatment outcome. Krabbe disease is an autosomal recessive disorder resulting from defects in the lysosomal enzyme galactocerebrosidase (GALC). GALC deficiency leads to severe neurological features. The only treatment for presymptomatic infantile patients and later-onset patients is hematopoietic stem cell transplantation (HSCT). This treatment is less than ideal with most patients eventually developing problems with gait and expressive language. Several naturally occurring animal models are available, including twitcher (twi) mice, which have been used for many treatment trials. Previous studies demonstrated that multiple injections of AAVrh10-GALC into the central nervous system (CNS) of neonatal twi mice resulted in significant improvements. Recently we showed that one i.v. injection of AAVrh10-GALC on PND10 resulted in normal GALC activity in the CNS and high activity in the peripheral nervous system (PNS). In the present study, a single i.v. injection of AAVrh10-GALC was given 1 day after bone marrow transplantation (BMT) on PND10. The mice show greatly extended lifespan and normal behavior with improved CNS and PNS findings. Since HSCT is the standard of care in human patients, adding this single i.v. injection of viral vector may greatly improve the treatment outcome.
Globoid cell leukodystrophy (GLD) or Krabbe disease is a neurodegenerative disorder caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). This deficiency results in accumulation of certain galactolipids including psychosine which is cytotoxic for myelin-producing cells. Treatment of human patients at this time is limited to hematopoietic stem cell transplantation (HSCT) that appears to slow the progression of the disease when performed in presymptomatic patients. In this study, adeno-associated virus (AAV) serotype rh10-(AAVrh10) expressing mouse GALC was used in treating twitcher (twi) mice, the mouse model of GLD. The combination of intracerebroventricular, intracerebellar, and intravenous (iv) injection of viral particles in neonate twi mice resulted in high GALC activity in brain and cerebellum and moderate to high GALC activity in spinal cord, sciatic nerve, and some peripheral organs. Successfully treated mice maintained their weight with no or very little twitching, living up to 8 months. The physical activities of the long-lived treated mice were comparable to wild type for most of their lives. Treated mice showed normal abilities to mate, to deliver pups, to nurse and to care for the newborns. This strategy alone or in combination with other therapeutic options may be applicable to treatment of human patients.