The Association for the Advancement of Artificial Intelligence presented its 2005 Spring Symposium Series on Monday through Wednesday, March 21-23, 2005 at Stanford University in Stanford, California. The topics of the eight symposia in this symposium series were (1) AI Technologies for Homeland Security; (2) Challenges to Decision Support in a Changing World; (3) Developmental Robotics; (4) Dialogical Robots: Verbal Interaction with Embodied Agents and Situated Devices; (5) Knowledge Collection from Volunteer Contributors; (6) Metacognition in Computation; (7) Persistent Assistants: Living and Working with AI; and (8) Reasoning with Mental and External Diagrams: Computational Modeling and Spatial Assistance.
The ability of a mobile robot system to plan and move intelligently in a dynamic system is needed if robots are to be useful in areas other than controlled environments. An example of a use for this system is to control an autonomous mobile robot in a space station, or other isolated area where it is hard or impossible for human life to exist for long periods of time (e.g., Mars). The system would allow the robot to be programmed to carry out the duties normally accomplished by a human being. Some of the duties that could be accomplished include operating instruments, transporting objects, and maintenance of the environment. The main focus of our early work has been on developing a fuzzy controller that takes a path and adapts it to a given environment. The robot only uses information gathered from the sensors, but retains the ability to avoid dynamically placed obstacles near and along the path. Our fuzzy logic controller is based on the following algorithm: (1) determine the desired direction of travel; (2) determine the allowed direction of travel; and (3) combine the desired and allowed directions in order to determine a direciton that is both desired and allowed. The desired direction of travel is determined by projecting ahead to a point along the path that is closer to the goal. This gives a local direction of travel for the robot and helps to avoid obstacles.
The ability to express emotions is important for creating believable interactive characters. To simulate emotional expressions in an interactive environment, an intelligent agent needs both an adaptive model for generating believable responses, and a visualization model for mapping emotions into facial expressions. Recent advances in intelligent agents and in facial modeling have produced effective algorithms for these tasks independently. We describe a method for integrating these algorithms to create an interactive simulation of an agent that produces appropriate facial expressions in a dynamic environment. Our approach to combining a model of emotions with a facial model represents a first step towards developing the technology of a truly believable interactive agent which has a wide range of applications from designing intelligent training systems to video games and animation tools.
Tracking the evolution of user interests is a problem instance of concept drift learning. Keeping track of multiple interest categories is a natural phenomenon as well as an interesting tracking problem because interests can emerge and diminish at different time frames. The first part of this dissertation presents a Mbultiple Tbhree-Dbescriptor Rbepresentation (MTDR) algorithm, a novel algorithm for learning concept drift especially built for tracking the dynamics of multiple target concepts in the information filtering domain. The learning process of the algorithm combines the long-term and short-term interest (concept) models in an attempt to benefit from the strength of both models. The MTDR algorithm improves over existing concept drift learning algorithms in the domain.
Being able to track multiple target concepts with a few examples poses an even more important and challenging problem because casual users tend to be reluctant to provide the examples needed, and learning from a few labeled data is generally difficult. The second part presents a computational Fbramework for Ebxtending Ibncomplete Lbabeled Dbata Sbtream (FEILDS). The system modularly extends the capability of an existing concept drift learner in dealing with incomplete labeled data stream. It expands the learner's original input stream with relevant unlabeled data; the process generates a new stream with improved learnability. FEILDS employs a concept formation system for organizing its input stream into a concept (cluster) hierarchy. The system uses the concept and cluster hierarchy to identify the instance's concept and unlabeled data relevant to a concept. It also adopts the persistence assumption in temporal reasoning for inferring the relevance of concepts. Empirical evaluation indicates that FEILDS is able to improve the performance of existing learners particularly when learning from a stream with a few labeled data.
Lastly, a new concept formation algorithm, one of the key components in the FEILDS architecture, is presented. The main idea is to discover intrinsic hierarchical structures regardless of the class distribution and the shape of the input stream. Experimental evaluation shows that the algorithm is relatively robust to input ordering, consistently producing a hierarchy structure of high quality.
Psychological studies on teamwork have shown that an effective team often can anticipate information needs of teammates based on a shared mental model. Existing multi-agent models for teamwork are limited in their ability to support proactive information exchange among teammates. To address this issue, we have developed and implemented a multi-agent architecture called CAST that simulates teamwork and supports proactive information exchange in a dynamic environment. We present a formal model for proactive information exchange. Knowledge regarding the structure and process of a team is described in a language called MALLET. Beliefs about shared team processes and their states are represented using Petri Nets. Based on this model, CAST agents offer information proactively to those who might need it using an algorithm called DIARG. Empirical evaluations using a multi-agent synthetic testbed application indicate that CAST enhances the effectiveness of teamwork among agents without sacrificing a high cost for communications.
Topic detection and tracking and topic segmentation play an important role in capturing the local and sequential information of documents. Previous work in this area usually focuses on single documents, although similar multiple documents are available in many domains. In this paper, we introduce a novel unsupervised method for shared topic detection and topic segmentation of multiple similar documents based on mutual information (MI) and weighted mutual information (WMI) that is a combination of MI and term weights. The basic idea is that the optimal segmentation maximizes MI (or WMI). Our approach can detect shared topics among documents. It can find the optimal boundaries in a document, and align segments among documents at the same time. It also can handle single-document segmentation as a special case of the multi-document segmentation and alignment. Our methods can identify and strengthen cue terms that can be used for segmentation and partially remove stop words by using term weights based on entropy learned from multiple documents. Our experimental results show that our algorithm works well for the tasks of single-document segmentation, shared topic detection, and multi-document segmentation. Utilizing information from multiple documents can tremendously improve the performance of topic segmentation, and using WMI is even better than using MI for the multi-document segmentation.
This paper proposes an intelligent training framework where agents are used with explicit teamwork models for desired teamwork behaviors. In the framework, we divide coaching process into two manageable sub-phases and model trainees regarding teamwork dynamics and team performance. We have implemented the framework on a team-based agent architecture (CAST) and applied it to train helping behaviors for a simulated command and control (C2) task. The framework and its implementation enable us to design experiments for studying the effectiveness of agent-based coaching for helping behaviors among team members.