Aiming at the problem that dynamic targets in indoor environments lead to low accuracy and large errors in the localization and position estimation of visual SLAM systems and the inability to build maps containing semantic information, a semantic visual SLAM algorithm based on the semantic segmentation network DeepLabV3+ and LK optical flow is proposed based on ORB-SLAM2 system. First, the dynamic target feature points are detected and rejected based on the lightweight semantic segmentation network DeepLabV3+ and LK optical flow method. second, the static environment occluded by the dynamic target is repaired using the time-weighted multi-frame fusion background repair technique. Lastly, the filtered static feature points are used for feature matching and position calculation. Meanwhile, the semantic labeling information of static objects obtained based on the lightweight semantic segmentation network DeepLabV3+ is fused with the static environment information after background repair to generate dense point cloud maps containing semantic information, and the semantic dense point cloud maps are transformed into semantic octree maps using the octree spatial segmentation data structure. The localization accuracy of the visual SLAM system and the construction of the semantic maps are verified using the TUM RGB-D widely used dataset and real scene data, respectively. The experimental results show that the proposed semantic visual SLAM algorithm can effectively reduce the influence of dynamic targets on the system, has a higher localization accuracy, and compared with other advanced algorithms, such as DynaSLAM, has the highest performance in indoor dynamic environments while considering both localization accuracy and real-time performance. In addition, semantic maps can be constructed so that the robot can better understand and adapt to the indoor dynamic environment.
Aiming at the problem that dynamic targets in indoor environments lead to low accuracy and large errors in the localization and position estimation of visual SLAM systems and the inability to build maps containing semantic information, a semantic visual SLAM algorithm based on the semantic segmentation network DeepLabV3+ and LK optical flow is proposed based on the ORB-SLAM2 system. First, the dynamic target feature points are detected and rejected based on the lightweight semantic segmentation network DeepLabV3+ and LK optical flow method. Second, the static environment occluded by the dynamic target is repaired using the time-weighted multi-frame fusion background repair technique. Lastly, the filtered static feature points are used for feature matching and position calculation. Meanwhile, the semantic labeling information of static objects obtained based on the lightweight semantic segmentation network DeepLabV3+ is fused with the static environment information after background repair to generate dense point cloud maps containing semantic information, and the semantic dense point cloud maps are transformed into semantic octree maps using the octree spatial segmentation data structure. The localization accuracy of the visual SLAM system and the construction of the semantic maps are verified using the widely used TUM RGB-D dataset and real scene data, respectively. The experimental results show that the proposed semantic visual SLAM algorithm can effectively reduce the influence of dynamic targets on the system, and compared with other advanced algorithms, such as DynaSLAM, it has the highest performance in indoor dynamic environments in terms of localization accuracy and time consumption. In addition, semantic maps can be constructed so that the robot can better understand and adapt to the indoor dynamic environment.
Aiming at the problems of low positioning accuracy and poor mapping effect of the visual SLAM system caused by the poor quality of the dynamic object mask in an indoor dynamic environment, an indoor dynamic VSLAM algorithm based on the YOLOv8 model and depth information (YOD-SLAM) is proposed based on the ORB-SLAM3 system. Firstly, the YOLOv8 model obtains the original mask of a priori dynamic objects, and the depth information is used to modify the mask. Secondly, the mask’s depth information and center point are used to a priori determine if the dynamic object has missed detection and if the mask needs to be redrawn. Then, the mask edge distance and depth information are used to judge the movement state of non-prior dynamic objects. Finally, all dynamic object information is removed, and the remaining static objects are used for posing estimation and dense point cloud mapping. The accuracy of camera positioning and the construction effect of dense point cloud maps are verified using the TUM RGB-D dataset and real environment data. The results show that YOD-SLAM has a higher positioning accuracy and dense point cloud mapping effect in dynamic scenes than other advanced SLAM systems such as DS-SLAM and DynaSLAM.
To solve the problem of fault diagnosis for the key components of the CNC machine feed system under the condition of variable speed conditions, an intelligent fault diagnosis method based on multi-domain feature extraction and an ensemble learning model is proposed in this study. First, various monitoring signals including vibration signals, noise signals, and current signals are collected. Then, the monitoring signals are preprocessed and the time domain, frequency domain, and time–frequency domain feature indices are extracted to construct a multi-dimensional mixed-domain feature set. Finally, the feature set is entered into the constructed DoubleEnsemble–LightGBM model to realize the fault diagnosis of the key components of the feed system. The experimental results show that the model can achieve good diagnosis results under different working conditions for both the widely used dataset and the feed system test bench dataset, and the average overall accuracy is 91.07% and 98.06%, respectively. Compared with XGBoost and other advanced ensemble learning models, this method demonstrates better accuracy. Therefore, the proposed method provides technical support for the stable operation and intelligence of CNC machines.
In order to solve the problem of fault diagnosis for CNC machine feed system under the condition of variable speed conditions, an intelligent fault diagnosis method based on multi-domain feature extraction and ensemble learning model is proposed. First, various monitoring signals including vibration signal, noise signal and current signal are collected. Then, the monitoring signals are preprocessed and the time-domain, frequency-domain and time-frequency domain feature indexes are extracted to construct a multi-dimensional mixed domain feature set. Finally, the feature set is putting into the constructed DoubleEnsemble-LightGBM model to realize the fault diagnosis of the feed system. The experimental results show that the model can achieve good diagnosis results under different working conditions for both the public data set and the feed system test bench data set, and the average overall accuracy is 91.07% and 98.06% respectively. Compared with XGBoost and other advanced ensemble learning models, the method has better accuracy. It provides technical support for the stable operation and intelligent of CNC machine tools..