Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL Copy DOI
Fermented concentrated feed has been widely recognized as an ideal feed in the animal industry. In this study, we used a powerful method, coupling propidium monoazide (PMA) pretreatment with single-molecule real-time (SMRT) sequencing technology to compare the bacterial and fungal composition of feeds before and after fermentation with four added lactic acid bacteria (LAB) inoculants (one Lactobacillus casei strain and three L. plantarum strains). Five feed samples consisting of corn, soybean meal, and wheat bran were fermented with LAB additives for 3 d. Following anaerobic fermentation, the pH rapidly decreased, and the mean numbers of LAB increased from 106 to 109 colony-forming units (cfu)/g fresh matter. SMRT sequencing results showed that the abundance and diversity of bacteria and fungi in the feed were significantly higher before fermentation than after fermentation. Fifteen bacterial species and eight fungal genera were significantly altered following fermentation, and L. plantarum was the dominant species (relative abundance 88.94%) in the post-fermentation group. PMA treatment revealed that the bacteria Bacillus cereus, B. circulans, Alkaliphilus oremlandii, Cronobacter sakazakii, Paenibacillus barcinonensis, and P. amylolyticus (relative abundance >1%) were viable in the raw feed. After fermentation, their relative abundances decreased sharply to <0.2%; however, viable L. plantarum was still the dominant species post fermentation. We inferred that our LAB additives grew rapidly and inhibited harmful microorganisms and further improved feed quality. In addition, coupling PMA treatment with the Pacific Biosciences SMRT sequencing technology was a powerful tool for providing accurate live microbiota profiling data in this study.
Lactobacillus kefiranofaciens is often found in fermented dairy products. Many strains of this species have probiotic properties, contributing to the regulation of immune metabolism and intestinal flora. This species was added to the list of lactic acid bacteria that can be added to food in China, in 2020. However, research on the genomics of this species is scarce. In this study we undertook whole genome sequencing analysis of 82 strains of L. kefiranofaciens from different habitats, of which 9 strains were downloaded from the NCBI RefSeq (National Center for Biotechnology Information RefSeq). The mean genome size of the 82 strains was 2.05 ± 0.25 Mbp, and the mean DNA G + C content was 37.47 ± 0.42%. The phylogenetic evolutionary tree for the core genes showed that all strains belonged to five clades with clear aggregation in relation to the isolation habitat; this indicated that the genetic evolution of L. kefiranofaciens was correlated to the isolation habitat. Analysis of the annotation results identified differences in the functional genes, carbohydrate active enzymes (CAZy) and bacteriocins amongst different isolated strains, which were related to the environment. Isolates from kefir grains had more enzymes for cellulose metabolism and a better ability to use vegetative substrates for fermentation, which could be used in feed production. Isolates from kefir grains also had fewer kinds of bacteriocin than isolates from sour milk and koumiss; helveticin J and lanthipeptide class I were not found in the isolates from kefir grains. The genomic characteristics and evolutionary process of L. kefiranofaciens were analyzed by comparative genomics and this paper explored the differences in the functional genes amongst the strains, aiming to provide a theoretical basis for the research and development of L. kefiranofaciens.
Abstract Background: Bifidobacterium catenulatum , which includes two subspecies that B. catenulatum subsp. kashiwanohense and B. catenulatum subsp. catenulatum are usually from infant and adult gut respectively, while the genomic studies of functional difference and genetic divergence in them have been rarely reported. In this study, we analyzed 16 B. catenulatum strains through comparative genomics, including two novel sequenced strains. Results: A phylogenetic tree based on 785 core genes indicated that the two subspecies of B. catenulatum were significantly separated and confirmed their colonizing bias in infants and adults. Comparison of general genomic characteristics revealed that the two subspecies had significantly different genomic sizes but similar GC content. Functional annotations found that they peculiarly differ in utilization of carbohydrates and amino acid. Among them, we found that carbohydrate metabolism seems to play an important role in the divergence because of their carbohydrate-active enzymes (CAZyme) present two different clustering patterns. B. catenulatum subsp. kashiwanohense have functional genes that specifically adapted to the infant gut for glycoside hydrolases 95 (GH95) and carbohydrate-binding modules 51 (CBM51), which specifically participated in the metabolism of Human Milk Oligosaccharides (HMOs), and specific genes fuc that related to HMOs were also detected. While B. catenulatum subsp. catenulatum rich in GH3 and glycosyltransferases 4 (GT4) tended to metabolize plant-derived glycan that may help it metabolize more complex carbohydrates (eg. xylan) in the adult intestine. Conclusions: Our findings revealed genomic evidence of carbohydrate utilization bias which may be a key leading to the genetic divergence of two subspecies of B. catenulatum .
Abstract Background The two subspecies of Bifidobacterium catenulatum , B. catenulatum subsp. kashiwanohense and B. catenulatum subsp. catenulatum , are usually from the infant and adult gut, respectively. However, the genomic analysis of their functional difference and genetic divergence has been rare. Here, 16 B. catenulatum strains, including 2 newly sequenced strains, were analysed through comparative genomics. Results A phylogenetic tree based on 785 core genes indicated that the two subspecies of B. catenulatum were significantly separated. The comparison of genomic characteristics revealed that the two subspecies had significantly different genomic sizes ( p < 0.05) but similar GC contents. The functional comparison revealed the most significant difference in genes of carbohydrate utilisation. Carbohydrate-active enzymes (CAZyme) present two clustering patterns in B. catenulatum. The B. catenulatum subsp. kashiwanohense specially including the glycoside hydrolases 95 (GH95) and carbohydrate-binding modules 51 (CBM51) families involved in the metabolism of human milk oligosaccharides (HMO) common in infants, also, the corresponding fucosylated HMO gene clusters were detected. Meanwhile, B. catenulatum subsp. catenulatum rich in GH3 may metabolise more plant-derived glycan in the adult intestine. Conclusions These findings provide genomic evidence of carbohydrate utilisation bias, which may be a key cause of the genetic divergence of two B. catenulatum subspecies.