Introduction: Due to potentially severe sequelae (impaired growth, condylar resorption, and ankylosis) early diagnosis of chronic rheumatic arthritis of the temporomandibular joint (TMJ) and timely onset of therapy are essential. Aim: Owing to very limited evidence the aim of the study was to identify and discuss controversial topics in the guideline development to promote further focused research. Methods: Through a systematic literature search, 394 out of 3771 publications were included in a German interdisciplinary guideline draft. Two workgroups (1: oral and maxillofacial surgery, 2: interdisciplinary) voted on 77 recommendations/statements, in 2 independent anonymized and blinded consensus phases (Delphi process). Results: The voting results were relatively homogenous, except for a greater proportion of abstentions amongst the interdisciplinary group (p < 0.001). Eighty-four percent of recommendations/statements were approved in the first round, 89% with strong consensus. Fourteen recommendations/statements (18.2%) required a prolonged consensus phase and further discussion. Discussion: Contrast-enhanced MRI was confirmed as the method of choice for the diagnosis of TMJ arthritis. Intraarticular corticosteroid injection is to be limited to therapy-refractory cases and single injection only. In adults, alloplastic joint replacement is preferable to autologous replacement. In children/adolescents, autologous reconstruction may be performed lacking viable alternatives. Alloplastic options are currently still considered experimental.
5-Hydroxytryptamine2 (5-HT2) receptor antagonists have been shown to interfere with the stimulation of striatal dopamine synthesis and release produced by the amphetamine analogue 3,4-methylenedioxymethamphetamine (MDMA). To localize the receptors responsible for the attenuation of MDMA-induced release, 5-HT2 receptor antagonists were infused via the microdialysis probe directly into the brains of awake, freely moving rats before the systemic administration of MDMA. Intrastriatal infusions of the selective 5-HT2 antagonist MDL 100,907 produced a concentration-dependent inhibition of MDMA-induced dopamine release. Similar results were observed with intrastriatal infusions of the 5-HT2 antagonist amperozide. In contrast, infusion of MDL 100,907 into the mid-brain region near the dopaminergic cell bodies was without effect on the MDMA-induced elevation of extracellular dopamine in the ipsilateral striatum. Neither antagonist attenuated basal transmitter efflux nor the MDMA-stimulated release of [3H]dopamine from striatal slices in vitro indicating that the in vivo effect of the antagonists was not due to inhibition of the dopamine uptake carrier. Intrastriatal infusion of tetrodotoxin reduced both basal and MDMA-stimulated dopamine efflux and eliminated the effect of intrastriatal MDL 100,907. The results indicate that 5-HT2 receptors located in the striatum augment the release of dopamine produced by high doses of MDMA. Furthermore, these 5-HT2 receptors appear to be located on nondopaminergic elements of the striatum.
Repair of tibial fractures in osteopetrotic rats was delayed in comparison to that of normal littermates, due to reduced remodeling. Reduced bone resorption, known to be the cause of the disease in this mutation, is expressed in both skeletal development and fracture repair. The possible implications for human juvenile osteopetrosis are discussed.
By utilizing structure-based drug design (SBDD) knowledge, a novel class of phosphodiesterase (PDE) 10A inhibitors was identified. The structure-based drug design efforts identified a unique “selectivity pocket” for PDE10A inhibitors, and interactions within this pocket allowed the design of highly selective and potent PDE10A inhibitors. Further optimization of brain penetration and drug-like properties led to the discovery of 2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethyl]-quinoline (PF-2545920). This PDE10A inhibitor is the first reported clinical entry for this mechanism in the treatment of schizophrenia.