We report that single-bubble sonoluminescence (SBSL) at low light intensities produces emission bands similar to multibubble sonoluminescence (MBSL) for pure noble gas bubbles. A smooth crossover between SBSL and MBSL behavior can be induced by varying the acoustic pressure amplitude and thereby the intensity of the light emitted. The relative intensity of the band emission depends both on the molecular weight of the noble gas and the water temperature. Our results provide a connection between the mechanisms SBSL and MBSL and show that molecular emission plays a role in SBSL.
We have made a detailed study of sonoluminescence (SL) in high magnetic fields. In magnetic field sweeps at constant levels of acoustic drive, SL disappears above a pressure-dependent threshold magnetic field. Sweeps of acoustic drive at fixed magnetic fields show that the upper and lower bounds of forcing pressure that determine the region of SL increase dramatically with magnetic field. This interplay between acoustic and magnetic fields suggests that the primary effect of magnetic fields on SL is to alter the condition for stable bubble oscillations.
We report on the cascade of quantum phase transitions exhibited by tunnel-coupled edge states across a quantum Hall line junction. We identify a series of quantum critical points between successive strong and weak tunneling regimes in the zero-bias conductance. Scaling analysis shows that the conductance near the critical magnetic fields $B_{c}$ is a function of a single scaling argument $|B-B_{c}|T^{-\kappa}$, where the exponent $\kappa = 0.42$. This puzzling resemblance to a quantum Hall-insulator transition points to importance of interedge correlation between the coupled edge states.
In this paper, we report on the study of Abelian and non-Abelian statistics through Fabry-Perot interferometry of fractional quantum Hall (FQH) systems. Our detection of phase slips in quantum interference experiments demonstrates a powerful, new way of detecting braiding of anyons. We confirm the Abelian anyonic braiding statistics in the $ν= 7/3$ FQH state through detection of the predicted statistical phase angle of $2π/3$, consistent with a change of the anyonic particle number by one. The $ν= 5/2$ FQH state is theoretically believed to harbor non-Abelian anyons which are Majorana, meaning that each pair of quasiparticles contain a neutral fermion orbital which can be occupied or unoccupied and hence can act as a qubit. In this case our observed statistical phase slips agree with a theoretical model where the Majoranas are strongly coupled to each other, and strongly coupled to the edge modes of the interferometer. In particular, an observed phase slip of approximately $π$ is interpreted as a sudden flip of a qubit, or entry of a neutral fermion into the interferometer. Our results provide compelling support for the existence of non-Abelian anyons.