Specific recognition and sensing of glycoproteins are of great importance in clinical diagnostics considering their frequent utilization as biomarkers and therapeutic targets. In this work, a biomimetic fluorescent sensor for the selective and sensitive detection of glycoprotein was developed, which was based on late-model boronate fluorescent molecularly imprinted nanoparticles (B-FMIP NPs). The B-FMIP NPs were fabricated via the macromolecular assembly of a fluorescent photo-crosslinkable amphiphilic copolymer containing boronic acid with glycoprotein in aqueous solution and in situ photo-crosslinking. Due to the synergism of boronate affinity and the molecular imprinting effect, the resultant B-FMIP NPs demonstrated specific recognition and remarkable selectivity toward the template glycoprotein (ovalbumin, OVA) with a high imprinted factor (α) of 6.0 and gave rise to obvious fluorescence quenching after binding with OVA in water. Under optimized experimental conditions, the as-prepared B-FMIP NPs exhibited linearity over the OVA concentration range of 10-13 to 10-3 mg mL-1 with a detection limit of 3.3 × 10-14 mg mL-1, as well as a rapid response time (about 10 min), which was superior to that of other previously reported OVA sensors. Finally, these B-FMIP NPs have been applied for the determination of OVA in real samples.
Bibliometric methods are used to summarize literature on cathode electrocatalysts for Zn-air batteries published from 2007 to 2021 and analyze the characteristics and research trends of the published literature. From 2007 to 2013, the number of articles published every year has been tiny. From then to now, the number of papers published increased rapidly. According to statistics in the past six years, China has published the most significant number of articles, accounting for almost two-thirds of the total.
Unbonded flexible risers have been widely used in the field of offshore engineering in recent years due to their excellent performance in extreme dynamic marine environments, structural compliance, low installation cost, and low quality. And, the internal pressure capacity of unbonded flexible risers is an important indicator of the mechanical performance of unbonded flexible risers. Based on a 2.5-inch, 8-layer typical unbonded flexible riser model, this paper examines the burst failure of the pressure armor layer. Firstly, the balance equation of each separate cylindrical layer and helical layer is derived by functional principle, and then the overall theoretical modeling of an unbonded flexible riser under axisymmetric loads is established by additionally considering the geometric relation between adjacent layers. Secondly, fully considering the complex cross-sectional geometric characteristics and the interlayer’s contact with the unbonded flexible riser, a simplified numerical 7-layer model is established by Abaqus, and the material with elastic-plastic properties is conferred. Finally, the validity of the proposed theoretical and numerical methods is verified through the axisymmetric behavior of the test data. Then the burst failure of the pressure armor layer is analyzed based on the material. At an internal pressure of 42 MPa, the pressure armor layer reached its yield stress of 300 MPa, with the entire cross-section yielding between 42 MPa and 42.5 MPa. Additionally, the effect of the friction coefficient is examined.