We consider future balloon-borne and ground-based suborbital experiments designed to search for inflationary gravitational waves, and investigate the impact of residual foregrounds that remain in the estimated cosmic microwave background maps. This is achieved by propagating foreground modelling uncertainties from the component separation, under the assumption of a spatially uniform foreground frequency scaling, through to the power spectrum estimates, and up to measurement of the tensor to scalar ratio in the parameter estimation step. We characterize the error covariance due to subtracted foregrounds, and find it to be subdominant compared to instrumental noise and sample variance in our simulated data analysis. We model the unsubtracted residual foreground contribution using a two-parameter power law and show that marginalization over these foreground parameters is effective in accounting for a bias due to excess foreground power at low ℓ. We conclude that, at least in the suborbital experimental setups we have simulated, foreground errors may be modeled and propagated up to parameter estimation with only a slight degradation of the target sensitivity of these experiments derived neglecting the presence of the foregrounds.
We present the XMM-Newton follow-up for confirmation of Planck cluster candidates. Twenty-five candidates have been observed to date using snapshot (~10 ksec) exposures, ten as part of a pilot programme to sample a low range of signal-to-noise ratios (45 candidates. The sensitivity and spatial resolution of XMM-Newton allows unambiguous discrimination between clusters and false candidates. The 4 false candidates have S/N <= 4.1. A total of 21 candidates are confirmed as extended X-ray sources. Seventeen are single clusters, the majority of which are found to have highly irregular and disturbed morphologies (about ~70%). The remaining four sources are multiple systems, including the unexpected discovery of a supercluster at z=0.45. For 20 sources we are able to derive a redshift estimate from the X-ray Fe K line (albeit of variable quality). The new clusters span the redshift range 0.09 <= z <= 0.54, with a median redshift of z~0.37. A first determination is made of their X-ray properties including the characteristic size, which is used to improve the estimate of the SZ Compton parameter, Y_SZ. The follow-up validation programme has helped to optimise the Planck candidate selection process. It has also provided a preview of the X-ray properties of these newly-discovered clusters, allowing comparison with their SZ properties, and to the X-ray and SZ properties of known clusters observed in the Planck survey. Our results suggest that Planck may have started to reveal a non-negligible population of massive dynamically perturbed objects that is under-represented in X-ray surveys. However, despite their particular properties, these new clusters appear to follow the Y_SZ-Y_X relation established for X-ray selected objects, where Y_X is the product of the gas mass and temperature.
The ESA's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the CMB and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the SZ effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter LCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25 sigma. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations derived from CMB data and that derived from SZ data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak.
We study the behavior of inflationary density perturbations in the vicinity of horizon crossing, using numerical evolution of the relevant mode equations. We explore two specific scenarios. In one, inflation is temporarily ended because a portion of the potential is too steep to support inflation. We find that perturbations on super-horizon scales can be modified, usually leading to a large amplification, because of entropy perturbations in the scalar field. This leads to a broad feature in the power spectrum, and the slow-roll and Stewart-Lyth approximations, which assume the perturbations reach an asymptotic regime well outside the horizon, can fail by many orders of magnitude in this regime. In the second scenario we consider perturbations generated right at the end of inflation, which re-enter shortly after inflation ends---such perturbations can be relevant for primordial black hole formation.
We consider approaches to cosmological parameter estimation in the inflationary cosmology, focusing on the required accuracy of the initial power spectra. Parametrizing the spectra, for example by power laws, is well suited to testing the inflationary paradigm but will only correctly estimate cosmological parameters if the parametrization is sufficiently accurate, and we investigate conditions under which this is achieved both for present data and for upcoming satellite data. If inflation is favored, reliable estimation of its physical parameters requires an alternative approach adopting its detailed predictions. For slow-roll inflation, we investigate the accuracy of the predicted spectra at first and second order in the slow-roll expansion (presenting the complete second-order corrections for the tensors for the first time). We find that, within the presently allowed parameter space, there are regions where it will be necessary to include second-order corrections to reach the accuracy requirements of MAP and Planck satellite data. We end by proposing a data analysis pipeline appropriate for testing inflation and for a cosmological parameter estimation from high-precision data.
Planck has observed the entire sky from 30 GHz to 857 GHz. The observed foreground emission contains contributions from different phases
of the interstellar medium (ISM). We have separated the observed Galactic emission into the different gaseous components (atomic, molecular
and ionised) in each of a number of Galactocentric rings. This technique provides the necessary information to study dust properties (emissivity,
temperature, etc.), as well as other emission mechanisms as a function of Galactic radius. Templates are created for various Galactocentric radii
using velocity information from atomic (neutral hydrogen) and molecular (12CO) observations. The ionised template is assumed to be traced by
free-free emission as observed by WMAP, while 408 MHz emission is used to trace the synchrotron component. Gas emission not traced by the
above templates, namely “dark gas”, as evidenced using Planck data, is included as an additional template, the first time such a component has
been used in this way. These templates are then correlated with each of the Planck frequency bands, as well as with higher frequency data from
IRAS and DIRBE along with radio data at 1.4 GHz. The emission per column density of the gas templates allows us to create distinct spectral
energy distributions (SEDs) per Galactocentric ring and in each of the gaseous tracers from 1.4 GHz to 25 THz (12 μm). The resulting SEDs
allow us to explore the contribution of various emission mechanisms to the Planck signal. Apart from the thermal dust and free-free emission, we
have probed the Galaxy for anomalous (e.g., spinning) dust as well as synchrotron emission. We find the dust opacity in the solar neighbourhood,
τ/NH = 0.92±0.05×10−25 cm2 at 250 μm, with no significant variation with Galactic radius, even though the dust temperature is seen to vary from
over 25 K to under 14 K. Furthermore, we show that anomalous dust emission is present in the atomic, molecular and dark gas phases throughout
the Galactic disk. Anomalous emission is not clearly detected in the ionised phase, as free-free emission is seen to dominate. The derived dust
propeties associated with the dark gas phase are derived but do not allow us to reveal the nature of this phase. For all environments, the anomalous
emission is consistent with rotation from polycyclic aromatic hydrocarbons (PAHs) and, according to our simple model, accounts for (25 ± 5)%
(statistical) of the total emission at 30 GHz.
Poster: ESSR 2017 / P-0238 / Acute and chronic appearances of spinal cord injury, with a review of chronic complications by: S. Leach1, G. Lloyd-Jones2; 1Southampton/UK, 2Salisbury/UK
Planck has produced detailed all-sky observations over nine frequency bands between 30 and 857 GHz. These observations allow robust reconstruction of the primordial cosmic microwave background (CMB) temperature fluctuations over nearly the full sky, as well as new constraints on Galactic foregrounds, including thermal dust and line emission from molecular carbon monoxide (CO). This paper describes the component separation framework adopted by Planck for many cosmological analyses, including CMB power spectrum determination and likelihood construction on large angular scales, studies of primordial non-Gaussianity and statistical isotropy, the integrated Sachs-Wolfe effect, gravitational lensing, and searches for topological defects. We test four foreground-cleaned CMB maps derived using qualitatively different component separation algorithms. The quality of our reconstructions is evaluated through detailed simulations and internal comparisons, and shown through various tests to be internally consistent and robust for CMB power spectrum and cosmological parameter estimation up to ℓ = 2000. The parameter constraints on ΛCDM cosmologies derived from these maps are consistent with those presented in the cross-spectrum based Planck likelihood analysis. We choose two of the CMB maps for specific scientific goals. We also present maps and frequency spectra of the Galactic low-frequency, CO, and thermal dust emission. The component maps are found to provide a faithful representation of the sky, as evaluated by simulations, with the largest bias seen in the CO component at 3%. For the low-frequency component, the spectral index varies widely over the sky, ranging from about β = −4 to − 2. Considering both morphology and prior knowledge of the low frequencycomponents, the index map allows us to associate a steep spectral index (β< −3.2) with strong anomalous microwave emission, corresponding to a spinning dust spectrum peaking below 20 GHz, a flat index of β> −2.3 with strong free-free emission, and intermediate values with synchrotron emission.
We describe the processing of data from the Low Frequency Instrument (LFI) used in production of the Planck Early Release Compact Source Catalogue (ERCSC). In particular, we discuss the steps involved in reducing the data from telemetry packets to cleaned, calibrated, time-ordered data (TOD) and frequency maps. Data are continuously calibrated using the modulation of the temperature of the cosmic microwave background radiation induced by the motion of the spacecraft. Noise properties are estimated from TOD from which the sky signal has been removed using a generalized least square map-making algorithm. Measured 1/f noise knee-frequencies range from 100mHz at 30GHz to a few tens of mHz at 70GHz. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices required to compute statistical uncertainties on LFI and Planck products are also produced. Main beams are estimated down to the approx -10dB level using Jupiter transits, which are also used for geometrical calibration of the focal plane.