We present a study of the $\rm{[OIII]λ\,5007}$ line profile in a sub-sample of 8 active galactic nuclei (AGN) and 6 non-AGN in the optically-selected green valley at $\rm{z\,<\,0.5}$ using long-slit spectroscopic observations with the 11 m Southern African Large Telescope. Gaussian decomposition of the line profile was performed to study its different components. We observe that the AGN profile is more complex than the non-AGN one. In particular, in most AGN (5/8) we detect a blue wing of the line. We derive the FWHM velocities of the wing and systemic component, and find that AGN show higher FWHM velocity than non-AGN in their core component. We also find that the AGN show blue wings with a median velocity width of approximately 600 $\rm{km\,s^{-1}}$, and a velocity offset from the core component in the range -90 to -350 $\rm{km\,s^{-1}}$, in contrast to the non-AGN galaxies, where we do not detect blue wings in any of their $\rm{[OIII]λ\,5007}$ line profiles. Using spatial information in our spectra, we show that at least three of the outflow candidate galaxies have centrally driven gas outflows extending across the whole galaxy. Moreover, these are also the galaxies which are located on the main sequence of star formation, raising the possibility that the AGN in our sample are influencing SF of their host galaxies (such as positive feedback). This is in agreement with our previous work where we studied SF, morphology, and stellar population properties of a sample of green valley AGN and non-AGN galaxies.
Clusters of varying mass ratios can merge and the process significantly disturbs the cluster environments and alters their global properties. Active radio galaxies are another phenomenon that can also affect cluster environments. Radio jets can interact with the intra-cluster medium (ICM) and locally affect its properties. Abell~2384 (hereafter A2384) is a unique system that has a dense, hot X-ray filament or bridge connecting the two unequal mass clusters A2384(N) and A2384(S). The analysis of its morphology suggests that A2384 is a post-merger system where A2384(S) has already interacted with the A2384(N), and as a result hot gas has been stripped over a ~ 1 Mpc region between the two bodies. We have obtained its 325 MHz GMRT data, and we detected a peculiar FR I type radio galaxy which is a part of the A2384(S). One of its radio lobes interacts with the hot X-ray bridge and pushes the hot gas in the opposite direction. This results in displacement in the bridge close to A2384(S). Based on Chandra and XMM-Newton X-ray observations, we notice a temperature and entropy enhancement at the radio lobe-X-ray plasma interaction site, which further suggests that the radio lobe is changing thermal plasma properties. We have also studied the radio properties of the FR I radio galaxy, and found that the size and radio luminosity of the interacting north lobe of the FR I galaxy are lower than those of the accompanying south lobe.
We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshift "desert" between low- and high-redshift SN Ia surveys. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space Telescope, and a compilation of nearby SN Ia measurements. Combining the SN Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS Luminous Red Galaxy sample and with CMB temperature anisotropy measurements from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat) +- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M = 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and HST supernovae. We present detailed discussions of systematic errors for both light-curve methods and find that they both show data-model discrepancies in rest-frame $U$-band. For the SALT-II approach, we also see strong evidence for redshift-dependence of the color-luminosity parameter (beta). Restricting the analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better agreement between the two analysis methods but with larger uncertainties.
We present a study of the $\rm{[OIII]\lambda\,5007}$ line profile in a sub-sample of 8 active galactic nuclei (AGN) and 6 non-AGN in the optically-selected green valley at $\rm{z\,<\,0.5}$ using long-slit spectroscopic observations with the 11 m Southern African Large Telescope. Gaussian decomposition of the line profile was performed to study its different components. We observe that the AGN profile is more complex than the non-AGN one. In particular, in most AGN (5/8) we detect a blue wing of the line. We derive the FWHM velocities of the wing and systemic component, and find that AGN show higher FWHM velocity than non-AGN in their core component. We also find that the AGN show blue wings with a median velocity width of approximately 600 $\rm{km\,s^{-1}}$, and a velocity offset from the core component in the range -90 to -350 $\rm{km\,s^{-1}}$, in contrast to the non-AGN galaxies, where we do not detect blue wings in any of their $\rm{[OIII]\lambda\,5007}$ line profiles. Using spatial information in our spectra, we show that at least three of the outflow candidate galaxies have centrally driven gas outflows extending across the whole galaxy. Moreover, these are also the galaxies which are located on the main sequence of star formation, raising the possibility that the AGN in our sample are influencing SF of their host galaxies (such as positive feedback). This is in agreement with our previous work where we studied SF, morphology, and stellar population properties of a sample of green valley AGN and non-AGN galaxies.
We analyse very long baseline interferometry (VLBI) observations of the blazar CGRaBS J0809+5341 using Bayesian inference methods. The observation was carried out at 5 GHz using eight telescopes which form part of the European VLBI Network. Imaging and deconvolution using traditional methods imply that the blazar is unresolved. To search for source structure beyond the diffraction limit, we perform Bayesian model selection between three source models (point, elliptical Gaussian and circular Gaussian). Our modelling jointly accounts for antenna-dependent gains and system equivalent flux densities. We obtain posterior distributions for the various source and instrumental parameters along with the corresponding uncertainties and correlations between them. We find that there is very strong evidence (>109:1) in favour of an elliptical Gaussian structure and using this model derive the apparent brightness temperature distribution of the blazar, accounting for uncertainties in the shape estimates. To test the integrity of our method, we also perform model selection on synthetic observations and use this to develop a Bayesian criterion for the minimum resolvable source size and consequently the maximum measurable brightness temperature for a given interferometer, dependent on the signal-to-noise ratio (SNR) of the data incorporating the aforementioned systematics. We find that calibration errors play an increasingly important role in determining the over-resolution limit for SNR≫100. We show that it is possible to exploit the resolving power of future VLBI arrays down to about 5 per cent of the size of the naturally weighted restoring beam, if the gain calibration is precise to 1 per cent or less.