The Neutron-star Interior Composition ExploreR (NICER) is collecting data to measure the radii of neutron stars by observing the pulsed emission from their surfaces. The primary targets are isolated, rotation-powered pulsars, in which the surface polar caps are heated by bombardment from magnetospheric currents of electrons and positrons. We investigate various stopping mechanisms for the beams of particles that bombard the atmosphere and calculate the heat deposition, the atmospheric temperature profiles, and the energy spectra and beaming of the emerging radiation. We find that low-energy particles with {\gamma} $\sim 2-10$ deposit most of their energy in the upper regions of the atmosphere, at low optical depth, resulting in beaming patterns that are substantially different than those of deep-heated, radiative equilibrium models. Only particles with energies {\gamma} $\gtrsim 50$ penetrate to high optical depths and fulfill the conditions necessary for a deep-heating approximation. We discuss the implications of our work for modeling the pulse profiles from rotation-powered pulsars and for the inference of their radii with NICER observations.
We study the structure of neutron stars in $f(R)$ gravity theories with perturbative constraints. We derive the modified Tolman-Oppenheimer-Volkov equations and solve them for a polytropic equation of state. We investigate the resulting modifications to the masses and radii of neutron stars and show that observations of surface phenomena alone cannot break the degeneracy between altering the theory of gravity versus choosing a different equation of state of neutron-star matter. On the other hand, observations of neutron-star cooling, which depends on the density of matter at the stellar interior, can place significant constraints on the parameters of the theory.
We report the discovery, with the Rossi X-Ray Timing Explorer, of a 50-60 Hz quasi-periodic oscillation (QPO) in GX 17+2. The QPO is seen when GX 17+2 is on the normal branch in the X-ray color-color diagram. Its frequency initially increases from 59 to 62 Hz as the source moves down the normal branch, but below the middle of the normal branch it decreases to ~50 Hz. Together with this frequency decrease, the QPO peak becomes much broader, from ~4 Hz in the upper part of the normal branch to ~15 Hz in the lower normal branch. The rms amplitude remains approximately constant between 1% and 2% along the entire normal branch. From a comparison of the properties of this QPO with those of QPOs previously observed along the normal branch in other Z sources, we conclude that it is most likely the horizontal-branch QPO (HBO). However, this QPO displays a number of unusual characteristics. The decrease in the QPO frequency along the lower normal branch is not in agreement with the predictions of the beat-frequency model for the HBO unless the mass flux through the inner disk decreases as the source moves down the lower normal branch. We tentatively suggest that the required decrease in the mass flux through the inner disk is caused by an unusually rapid increase in the mass flux in the radial inflow as GX 17+2 moves down the normal branch. Assuming that this explanation is correct, we can derive an upper bound on the dipole component of the star's magnetic field at the magnetic equator of 5 × 109 G for a 1.4 M☉ neutron star with a radius of 106 cm.
The Kerr-Newman metric is the unique vacuum solution of the General Relativistic field equations, in which any singularities or spacetime pathologies are hidden behind horizons. They are believed to describe the spacetimes of massive astrophysical objects with no surfaces, which we call black holes. This spacetime, which is defined entirely by the mass, spin, and charge of the black hole, gives rise to a variety of phenomena in the motion of particles and photons outside the horizons that have no Newtonian counterparts. Moreover, the Kerr-Newman spacetime remains remarkably resilient to many attempts in modifying the underlying theory of gravity. The monitoring of stellar orbits around supermassive black holes, the detection of gravitational waves from the coalescence of stellar-mass black holes, and the observation of black-hole shadows in images with horizon-scale resolution, all of which have become possible during the last decade, are offering valuable tools in testing quantitatively the predictions of this remarkable solution to Einstein's equations.
Three types of quasi-periodic oscillations (QPOs) have been discovered so far in the persistent emission of the most luminous neutron star low-mass X-ray binaries, the Z sources: ~10-60 Hz horizontal-branch and ~6-20 Hz normal/flaring-branch oscillations and ~200-1200 Hz kilohertz QPOs, which usually occur in pairs. Here we study the horizontal-branch oscillations and the two simultaneous kilohertz QPOs, which were discovered using the Rossi X-Ray Timing Explorer, comparing their properties in five Z sources with the predictions of the magnetospheric beat-frequency and Lense-Thirring precession models. We find that the variation of the horizontal-branch oscillation frequency with accretion rate predicted by the magnetospheric beat-frequency model for a purely dipolar stellar magnetic field and a radiation-pressure-dominated inner accretion disk is consistent with the observed variation. The model predicts a universal relation between the horizontal-branch oscillation, stellar spin, and upper kilohertz QPO frequencies that agrees with the data on five Z sources. The model implies that the neutron stars in the Z sources are near magnetic spin equilibrium, that their magnetic field strengths are ~109-1010 G, and that the critical fastness parameter for these sources is ≳0.8. If the frequency of the upper kilohertz QPO is an orbital frequency in the accretion disk, the magnetospheric beat-frequency model requires that a small fraction of the gas in the disk does not couple strongly to the stellar magnetic field at 3-4 stellar radii but instead drifts slowly inward in nearly circular orbits until it is within a few kilometers of the neutron star surface. The Lense-Thirring precession model is consistent with the observed magnitudes of the horizontal-branch oscillation frequencies only if the moments of inertia of the neutron stars in the Z sources are ~4-5 times larger than the largest values predicted by realistic neutron star equations of state. If instead the moments of inertia of neutron stars have the size expected and their spin frequencies in the Z sources are approximately equal to the frequency separation of the kilohertz QPOs, Lense-Thirring precession can account for the magnitudes of the horizontal-branch oscillation frequencies only if the fundamental frequency of the horizontal-branch oscillation is at least 4 times the precession frequency. We argue that the change in the slope of the correlation between the frequency of the horizontal-branch oscillation and the frequency of the upper kilohertz QPO, when the latter is greater than 850 Hz, is directly related to the varying frequency separation of the kilohertz QPOs.
Accretion disks are three-dimensional, turbulent, often self-gravitating, magnetohydrodynamic (MHD) flows, which can be modeled with numerical simulations. In this paper, we present a new algorithm that is based on a spectral decomposition method to simulate such flows. Because of the high order of the method, we can solve the induction equation in terms of the magnetic vector potential and, therefore, ensure trivially that the magnetic fields in the numerical solution are divergence free. The spectral method also suffers minimally from numerical dissipation and allows for an easy implementation of models for subgrid physics. Both properties make our method ideal for studying MHD turbulent flows such as those found in accretion disks around compact objects. We verify our algorithm with a series of standard tests and use it to show the development of MHD turbulence in a simulation of an accretion disk. Finally, we study the evolution and saturation of the power spectrum of MHD turbulence driven by the magnetorotational instability.
One of the most dramatic discoveries made with the Rossi X-Ray Timing Explorer is that many accreting neutron stars in low-mass binary systems produce strong, remarkably coherent, high-frequency X-ray brightness oscillations. The 325-1200 Hz quasi-periodic oscillations (QPOs) observed in the accretion-powered emission are thought to be produced by gas orbiting very close to the neutron star, whereas the 360-600 Hz brightness oscillations seen during thermonuclear X-ray bursts are produced by one or two hot spots rotating with the star and have frequencies equal to the stellar spin frequency or its first overtone. The oscillations constrain the masses and radii of these neutron stars, which are thought to be the progenitors of the millisecond pulsars. Modeling indicates that the stars have spin frequencies 250-350 Hz and magnetic fields 1e7-5e9 G.