Statins activate phosphatidylinositol-3-kinase, which activates ecto-5'-nucleotidase and phosphorylates 3-phosphoinositide-dependent kinase-1 (PDK-1). Phosphorylated (P-)PDK-1 phosphorylates Akt, which phosphorylates endothelial nitric oxide synthase (eNOS). We asked if the blockade of adenosine receptors (A(1), A(2A), A(2B), or A(3) receptors) could attenuate the induction of Akt and eNOS by atorvastatin (ATV) and whether ERK1/2 is involved in the ATV regulation of Akt and eNOS. In protocol 1, mice received intraperitoneal ATV, theophylline (TH), ATV + TH, or vehicle. In protocol 2, mice received intraperitoneal injections of ATV, U0126 (an ERK1/2 inhibitor), ATV + U0126, or vehicle; 8 h later, hearts were assessed by immunoblot analysis. In protocol 3, mice received intraperitoneal ATV alone or with 8-sulfophenyltheophylline (SPT); 1, 3, and 6 h after injection, hearts were assessed by immunoblot analysis. In protocol 4, mice received intraperitoneal ATV alone or with SPT, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC), alloxazine, or MRS-1523; 3 h after injection, hearts were assessed by immunoblot analysis. ATV increased P-ERK, P-PDK-1, Ser(473) P-Akt, Thr(308) P-Akt, and P-eNOS levels. TH blocked ATV-induced increases in P-ERK, Ser(473) P-Akt, Thr(308) P-Akt, and P-eNOS levels without affecting the induction of P-PDK-1 by ATV. U0126 blocked the ATV induction of Ser(473) P-Akt and Thr(308) P-Akt while attenuating the induction of P-eNOS. A detectable increase in P-ERK, Ser(473) P-Akt and P-eNOS was seen 3 and 6 h after injection but not at 1 h. DPCPX, CSC, and alloxazine partially blocked the ATV induction of P-ERK, Ser(473) P-Akt, and P-eNOS. In conclusion, blockade of adenosine A(1), A(2A), and A(2B) receptors but not A(3) receptors inhibited the induction of Akt and eNOS by statins. Adenosine was required for ERK1/2 activation by statins, which resulted in Akt and eNOS phosphorylation.
Pretreatment with atorvastatin (ATV) reduces infarct size (IS) and increases myocardial expression of phosphorylated endothelial nitric oxide synthase (p-eNOS), inducible NOS (iNOS), and cyclooxygenase-2 (COX2) in the rat. Inhibiting COX2 abolished the ATV-induced IS limitation without affecting p-eNOS and iNOS expression. We investigated 1) whether 3-day ATV pretreatment limits IS in eNOS(-/-) and iNOS(-/-) mice and 2) whether COX2 expression and/or activation by ATV is eNOS, iNOS, and/or NF-kappaB dependent. Male C57BL/6 wild-type (WT), University of North Carolina eNOS(-/-) and iNOS(-/-) mice received ATV (10 mg.kg(-1).day(-1); ATV(+)) or water alone (ATV(-)) for 3 days. Mice underwent 30 min of coronary artery occlusion and 4 h of reperfusion, or hearts were harvested and subjected to ELISA, immunoblotting, biotin switch, and electrophoretic mobility shift assay. As a result, ATV reduced IS only in the WT mice. ATV increased eNOS, p-eNOS, iNOS, and COX2 levels and activated NF-kappaB in WT mice. It also increased myocardial COX2 activity. In eNOS(-/-) mice, ATV increased COX2 expression but not COX2 activity or iNOS expression. NF-kappaB was not activated by ATV in the eNOS(-/-) mice. In the iNOS(-/-) mice, eNOS and p-eNOS levels were increased but not iNOS and COX2 levels; however, NF-kappaB was activated. In conclusion, both eNOS and iNOS are essential for the IS-limiting effect of ATV. The expression of COX2 by ATV is iNOS, but not eNOS or NF-kappaB, dependent. Activation of COX2 is dependent on iNOS.
Endothelial nitric oxide synthase (eNOS) activation with subsequent inducible NOS (iNOS), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase-2 (COX2) activation is essential to statin inhibition of myocardial infarct size (IS). In the rat, the peroxisome proliferator-activated receptor-gamma agonist pioglitazone (Pio) limits IS, upregulates and activates cPLA2 and COX2, and increases myocardial 6-keto-PGF1alpha levels without activating eNOS and iNOS. We asked whether Pio also limits IS in eNOS-/- and iNOS-/- mice. Male C57BL/6 wild-type (WT), eNOS-/-, and iNOS-/- mice received 10 mg.kg(-1).day(-1) Pio (Pio+) or water alone (Pio-) for 3 days. Mice underwent 30 min coronary artery occlusion and 4 h reperfusion, or hearts were harvested and subjected to ELISA and immunoblotting. As a result, Pio reduced IS in the WT (15.4+/-1.4% vs. 39.0+/-1.1%; P<0.001), as well as in the eNOS-/- (32.0+/-1.6% vs. 44.2+/-1.9%; P<0.001) and iNOS-/- (18.0+/-1.2% vs. 45.5+/-2.3%; P<0.001) mice. The protective effect of Pio in eNOS-/- mice was smaller than in the WT (P<0.001) and iNOS-/- (P<0.001) mice. Pio increased myocardial Ser633 and Ser1177 phosphorylated eNOS levels in the WT and iNOS-/- mice. iNOS was undetectable in all six groups. Pio increased cPLA2, COX2, and PGI2 synthase levels in the WT, as well as in the eNOS-/- and iNOS-/-, mice. Pio increased the myocardial 6-keto-PGF1alpha levels and cPLA2 and COX2 activity in the WT, eNOS-/-, and iNOS-/- mice. In conclusion, the myocardial protective effect of Pio is iNOS independent and may be only partially dependent on eNOS. Because eNOS activity decreases with age, diabetes, and advanced atherosclerosis, this effect may be relevant in a clinical setting and should be further characterized.
Pioglitazone (PIO) and glucagon-like peptide-1 (GLP-1) analogs limit infarct size (IS) in experimental models. The effects of the dipeptidyl-peptidase-IV inhibitors, which increase the endogenous levels of GLP-1, on myocardial protection, are unknown. We studied whether sitagliptin (SIT) and PIO have additive effects on IS limitation in the mouse. Mice received 3-day or 14-day oral SIT (300 mg.kg(-1).day(-1)), PIO (5 mg.kg(-1).day(-1)), SIT + PIO, or vehicle. In addition, mice received intravenous H-89 [20 mg/kg, a protein kinase A (PKA) inhibitor] or vehicle 1 h before ischemia. Rats underwent 30 min myocardial ischemia and 4 h reperfusion. SIT, PIO, and SIT + PIO for 3 days significantly reduced IS (24.3 +/- 2.7, 23.0 +/- 0.8, and 14.7 +/- 0.9%) compared with controls (46.2 +/- 2.8%). H-89 completely blocked the effect of SIT and partially blocked the PIO effect. SIT, but not PIO, increased cAMP levels. PKA activity was increased by PIO and to a greater extent by SIT. PIO, but not SIT, increased cytosolic phospholipase A(2) and cyclooxygenase-2 activity. Accordingly, 6-keto-PGF(1alpha) and 15-deoxy-PGJ(2) increased by PIO but not SIT. In contrast, SIT, and to a lesser extent PIO, increased 15-epi-lipoxin A(4) levels. H-89 completely blocked the effect of SIT and PIO on 15-epi-lipoxin A(4) levels. PIO, and to a greater extent SIT, increased endothelial nitric oxide synthase and cAMP response element-binding protein phosphorylation, an effect that was blocked by H-89. With a 14-day pretreatment experiment, IS was 46.4 +/- 1.0% in the control group, 16.9 +/- 0.6% in SIT (P < 0.001), 19.1 +/- 1.1% in PIO (P = 0.014), and 12.9 +/- 0.7% in SIT + PIO (P < 0.001). We found that SIT and PIO limit IS using different pathways. The protective effect of SIT is via cAMP-dependent PKA activation, whereas PIO mediates its effects via both PKA-dependent and -independent pathways.
We determined the effects of cyclooxygenase-1 (COX-1; SC-560), COX-2 (SC-58125), and inducible nitric oxide synthase (iNOS; 1400W) inhibitors on atorvastatin (ATV)-induced myocardial protection and whether iNOS mediates the ATV-induced increases in COX-2. Sprague-Dawley rats received 10 mg ATV.kg(-1).day(-1) added to drinking water or water alone for 3 days and received intravenous SC-58125, SC-560, 1400W, or vehicle alone. Anesthesia was induced with ketamine and xylazine and maintained with isoflurane. Fifteen minutes after intravenous injection rats underwent 30-min myocardial ischemia followed by 4-h reperfusion [infarct size (IS) protocol], or the hearts were explanted for biochemical analysis and immunoblotting. Left ventricular weight and area at risk (AR) were comparable among groups. ATV reduced IS to 12.7% (SD 3.1) of AR, a reduction of 64% vs. 35.1% (SD 7.6) in the sham-treated group (P < 0.001). SC-58125 and 1400W attenuated the protective effect without affecting IS in the non-ATV-treated rats. ATV increased calcium-independent NOS (iNOS) [11.9 (SD 0.8) vs. 3.9 (SD 0.1) x 1,000 counts/min; P < 0.001] and COX-2 [46.7 (SD 1.1) vs. 6.5 (SD 1.4) pg/ml of 6-keto-PGF(1alpha); P < 0.001] activity. Both SC-58125 and 1400W attenuated this increase. SC-58125 did not affect iNOS activity, whereas 1400W blocked iNOS activity. COX-2 was S-nitrosylated in ATV-treated but not sham-treated rats or rats pretreated with 1400W. COX-2 immunoprecipitated with iNOS but not with endothelial nitric oxide synthase. We conclude that ATV reduced IS by increasing the activity of iNOS and COX-2, iNOS is upstream to COX-2, and iNOS activates COX-2 by S-nitrosylation. These results are consistent with the hypothesis that preconditioning effects are mediated via PG.
Both statins and thiazolidinediones have antiinflammatory properties. However, the exact mechanisms underlying these effects are unknown. We investigated whether atorvastatin (ATV) and pioglitazone (PIO) increase the myocardial content of lipoxin-A4 and 15(R)-epi-lipoxin-A4 (15-epi-LXA4), both arachidonic acid products with strong antiinflammatory properties.In experiment 1, rats received 3-day pretreatment with water; PIO 2, 5, or 10 mg x kg(-1) x d(-1); ATV 2, 5, or 10 mg x kg(-1) x d(-1); or PIO 10 mg x kg(-1) x d(-1)+ATV 10 mg x kg(-1) x d(-1). In experiment 2, rats received water; PIO 10 mg x kg(-1) x d(-1)+ATV 10 mg x kg(-1) x d(-1); PIO+ATV and valdecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor; PIO+ATV and zileuton, a selective 5-lipoxygenase inhibitor; or zileuton alone. There were 4 rats in each group. Hearts were harvested and analyzed for myocardial lipoxin-A4 and 15-epi-LXA4 levels and for COX-2 and 5-lipoxygenase protein expression. ATV and PIO at 5 and 10 mg x kg(-1) . d(-1) significantly increased myocardial 15-epi-LXA4 levels compared with the sham-treated group (0.51 +/- 0.02 ng/mg). Myocardial 15-epi-LXA4 were significantly higher in the PIO+ATV group (1.29 +/- 0.02 ng/mg; P < 0.001 versus each other group). Both valdecoxib and zileuton abrogated the PIO+ATV increase in 15-epi-LXA4, whereas zileuton alone had no effect. PIO, ATV, and their combination resulted in a small increase in myocardial lipoxin-A4 levels, which was not statistically significant. ATV alone or in combination with PIO markedly augmented COX-2 expression. PIO had a much smaller effect on COX-2 expression. Myocardial expression of 5-lipoxygenase was not altered by PIO, ATV, or their combination.Both PIO and ATV increase myocardial levels of 15-epi-LXA4, a mediator with antiinflammatory properties. This finding may explain the antiinflammatory properties of both PIO and ATV.
We assessed 1) whether pretreatment before ischemia with pioglitazone (Pio) limits infarct size (IS) and whether this protective effect is due to nitric oxide synthase (NOS) and/or prostaglandin production, as has been shown for atorvastatin (ATV); and 2) whether Pio and ATV have synergistic effects on myocardial protection. Sprague-Dawley rats received oral ATV (10 mg.kg-1.day-1), Pio (10 mg.kg-1.day-1), their combination (Pio+ATV), or water alone for 3 days. Additional rats received Pio (10 mg.kg-1.day-1) for 3 days and intravenous SC-58125 [a cyclooxygenase-2 (COX-2) inhibitor] or SC-560 (a COX-1 inhibitor) 15 min before ischemia. Rats underwent 30 min of myocardial ischemia and 4 h of reperfusion, or hearts were harvested for analysis. IS in the Pio and in the ATV groups was significantly smaller than in the sham-treated group. IS in the Pio+ATV group was smaller than in all other groups (P<0.001 vs. each group). The protective effect of Pio was abrogated by SC-58125 but not by SC-560. Pio, ATV, and Pio + ATV increased the expression and activity of cytosolic phospholipase A2 (cPLA2) and COX-2. ATV increased phosphorylated-Akt, phosphorylated-endothelial NOS (P-eNOS), inducible NOS, and COX-2 levels. In contrast, Pio caused an insignificant increase in myocardial levels of phosphorylated-Akt but did not change P-eNOS and iNOS expression. In conclusion, the IS-limiting effects of Pio and ATV involve COX-2. However, the upstream steps differ. ATV induced eNOS phosphorylation and iNOS, cPLA2, and COX-2 expression, whereas Pio induced mainly the expression and activity of cPLA2. The effects of Pio and ATV were additive.