Abstract. New particle formation (NPF) events and their impacts on cloud condensation nuclei (CCN) were investigated using continuous measurements collected in urban Shanghai from 1 to 30 April 2012. During the campaign, NPF occurred in 8 out of the 30 days and enhanced CCN number concentration (NCCN) by a factor of 1.2–1.8, depending on supersaturation (SS). The NPF event on 3 April 2012 was chosen as an example to investigate the NPF influence on CCN activity. In this NPF event, secondary aerosols were produced continuously and increased PM2.5 mass concentration at a rate of 4.33 μg cm−3 h−1, and the growth rate (GR) and formation rate (FR) were on average 5 nm h−1 and 0.36 cm−3 s−1, respectively. The newly formed particles grew quickly from nucleation mode (10–20 nm) into CCN size range. NCCN increased rapidly at SS of 0.4–1.0% but weakly at SS of 0.2%. Correspondingly, aerosol CCN activities (fractions of activated aerosol particles in total aerosols, NCCN/NCN) were significantly enhanced from 0.24–0.60 to 0.30–0.91 at SS of 0.2–1.0% due to the NPF. On the basis of the κ-Köhler theory, aerosol size distributions and chemical composition measured simultaneously were used to predict NCCN. There was a good agreement between the predicted and measured NCCN (R2=0.96, Npredicted/Nmeasured=1.04). This study reveals that NPF exerts large impacts on aerosol particle abundance and size spectra; thus, it significantly promotes NCCN and aerosol CCN activity in this urban environment. The GR of NPF is the key factor controlling the newly formed particles to become CCN at all SS levels, whereas the FR is an effective factor only under high SS (e.g., 1.0%) conditions.
Abstract. Controlled bench scale pulverized coal combustion studies were performed, demonstrating that inorganic particles play a critical role as carriers of organic species. Two commonly-used aerosol mass spectrometry techniques were applied to characterize fine particle formation during coal combustion. It was found that the organic species in coal combustion aerosols have mass spectra similar to those generated by biomass combustion. Ambient measurements in Shanghai, China confirm the presence of these species in approximately 29–38% of the sampled particles. With the absence of major biomass sources in the Shanghai area, it is suggested that coal combustion may be the main source of these particles. This work indicates there is a significant potential for incorrect apportionment of coal combustion particles to biomass burning sources using widely adopted mass spectrometry techniques.
Abstract. Controlled bench scale pulverized coal combustion studies were performed that demonstrate that inorganic particles play a critical role as carrier of organic species. Two commonly-used aerosol mass spectrometry techniques have been applied to characterize fine particle formation during coal combustion. It was found that the organic species in coal combustion aerosols have similar mass spectra as those from biomass combustion. Ambient measurements in Shanghai, China confirm the presence of these species in approximately 36~42% of the sampled particles. With the absence of major biomass sources in the Shanghai area, it is suggested that coal combustion may be the main source of these particles. This work indicates there is a significant potential for incorrect apportionment of coal combustion particles to biomass burning sources using widely adopted mass spectrometry techniques.
Abstract. Measurements of cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol chemical composition were performed simultaneously at an urban site in Shanghai from 6 to 9 November 2010. The variations of CCN number concentration (NCCN) and aerosol activity (activated aerosol fraction, NCCN/NCN) were examined during a fog–haze co-occurring event. Anthropogenic pollutants emitted from vehicles and unfavorable meteorological conditions such as low planetary boundary layer (PBL) height exerted a great influence on PM2.5 and black carbon (BC) loadings. NCCN at 0.2% supersaturation (SS) mostly fell in the range of 994 to 6268 cm−3, and the corresponding NCCN/NCN varied between 0.09 and 0.57. NCCN and NCCN/NCN usually were usually higher in the hazy case due to increased aerosol concentration in the accumulation mode (100–500 nm), and lower in the foggy–hazy and clear cases. The BC mass concentration posed a strong positive effect on NCCN in the foggy–hazy and hazy cases, whereas it poorly correlated with NCCN in the clear case. NCCN/NCN was weakly related with BC in both foggy–hazy and hazy cases. By using a simplified particle hygroscopicity (κ), the calculated critical dry size (CDS) of activated aerosol did not exceed 130 nm at 0.2% SS in spite of diverse aerosol chemical compositions. The predicted NCCN at 0.2% SS was very successful compared with the observed NCCN in clear case (R2=0.96) and foggy–hazy/hazy cases (R2=0.91). In addition, their corresponding ratios of predicted to observed NCCNwere on average 0.95 and 0.92, respectively. More organic matter is possibly responsible for this closure difference between foggy–hazy/hazy and clear cases. These results reveal that the particulate pollutant burden exerts a significant impact on NCCN, especially NCCN/NCN promotes effectively during the polluted periods.
Abstract. New particle formation (NPF) events and their impacts on cloud condensation nuclei (CCN) were investigated using continuous measurements collected in urban Shanghai from 1 to 30 April 2012. During the campaign, NPF occurred in 8 out of the 30 days and enhanced CCN number concentration (NCCN) by a actor of 1.2–1.8, depending on supersaturation (SS). The NPF event on 3 April 2012 was chosen as an example to investigate the NPF influence on CCN activity. In this NPF event, secondary aerosols were produced continuously and increased PM2.5 mass concentration at a~rate of 4.33 μg cm−3 h−1, and the growth rate (GR) and formation rate (FR) were on average 5 nm h−1 and 0.36 cm−3 s−1, respectively. The newly formed particles grew quickly from nucleation mode (10–20 nm) into CCN size range. NCCN increased rapidly at SS of 0.4–1.0% but weakly at SS of 0.2%. Correspondingly, aerosol CCN activities (fractions of activated aerosol particles in total aerosols, NCCN / NCN) were significantly enhanced from 0.24–0.60 to 0.30–0.91 at SS of 0.2–1.0% due to the NPF. On the basis of the κ-Köhler theory, aerosol size distributions and chemical composition measured simultaneously were used to predict NCCN. There was a good agreement between the predicted and measured NCCN (R2 = 0.96, Npredicted / Nmeasured = 1.04). This study reveals that NPF exerts large impacts on aerosol particle abundance and size spectra, thus significantly promotes NCCN and aerosol CCN activity in this urban environment. The GR of NPF is the key factor controlling the newly formed particles to become CCN at all SS levels, whereas the FR is an effective factor only under high SS (e.g. 1.0%) conditions.
Abstract. A historic winter haze weather, characterized by long duration, large scale and strong pollution intensity, occurred in the Yangtze River Delta (YRD) region of China during the time frame of 1 to 10 December 2013. This severe haze event constituted of several hazy episodes and significantly influenced air quality throughout the region, especially in urban areas. Aerosol physical, chemical and optical properties were measured in Shanghai, where the instantaneous particulate mass burden per volume (e.g. PM2.5) exceeded 600 μg m−3 in some time, breaking the existing historical observation records, and examined to give insights into severe haze weathers. Inorganic water-soluble ions in particles, trace gases and aerosol scattering/absorption coefficients had the same tendency to increase evidently from clear episodes to hazy episodes. A combination of various factors contributed to the formation and evolution of the severe haze, among which meteorological conditions, local anthropogenic emissions and aerosol properties played the major roles. During the haze weather, the YRD region was under the control of a high-pressure system with extremely small surface pressure gradients. The calm surface wind and subsidence airflow were responsible for decreasing planetary boundary layer (PBL) height and constructive to the build-up of air pollutants wandering inside the region, and ultimately induced the haze occurrence. Nonlinear regression analyses indicated that single water-soluble ion did not correlated with the atmospheric visibility degradation so strong, while high ambient relative humidity (RH) indeed exerted a great impact with a correlation coefficient (R2) of 0.41. Moreover, the close relationship was derived between atmospheric visibility and aerosols in size of 600–1400 nm with R2 of 0.70, which further improved to 0.73 when combined aerosol hygroscopicity. This study may provide supports for the public and authorities to recognize severe haze weathers in urban environments, and act as a reference for forecasting and eliminating the occurrences of regional atmospheric pollutions in China.
Abstract. Measurements of Cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol chemical composition were performed simultaneously at an urban site of Shanghai from 6 to 9 November 2010. The variations of CCN number concentration (NCCN) and aerosol activity (activated aerosol fraction, NCCN/NCN) were examined during a fog-haze co-occurring event. Anthropogenic pollutants emitted from vehicles and unfavorable meteorological conditions such as low planetary boundary layer (PBL) height exerted a great influence on CN and black carbon (BC) loadings. NCCN at 0.2% supersaturation (SS) mostly fell in the range of 994 to 6268 cm−3, and the corresponding NCCN/NCN varied between 0.09 and 0.57. NCCN and NCCN/NCN usually were higher in hazy days due to increased aerosol concentration in the accumulation mode (100–500 nm), and lower in foggy-hazy and clear days. BC mass concentration posed a strong positive effect on NCCN in foggy-hazy and hazy days, whereas it poorly correlated with NCCN in clear days. NCCN/NCN was weakly related with BC both in foggy-hazy/hazy and clear days. By using a simplified particle hygroscopicity (κ), the calculated critical dry size (CDS) of activated aerosol did not exceed 130 nm at 0.2% SS in spite of diverse aerosol chemical compositions. The predicted NCCN at 0.2% SS was very successful compared with the observed NCCN in clear days (R2=0.96) and foggy-hazy/hazy days (R2=0.91). In addition, their corresponding ratios of predicted to observed NCCN were on average 0.95 and 0.92, respectively. More organic matter is possibly responsible for this closure difference between foggy-hazy/hazy and clear days. These results reveal that the particulate pollutant burden exerts a significant impact on NCCN, especially NCCN/NCN promotes effectively during the polluted periods.